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Abstract
Local search is widely applied to satisfiable SAT prob-
lems, and on some problem classes outperforms backtrack
search. An intriguing challenge posed by Selman, Kautz and
McAllester in 1997 is to use it instead to prove unsatisfia-
bility. We design a greedy randomised resolution algorithm
called RANGER that will eventually refute any unsatisfiable
instance while using only bounded memory. RANGER can
refute some problems more quickly than systematic resolu-
tion or backtracking with clause learning. We believe that
non-systematic but greedy inference is an interesting research
direction for powerful proof systems such as general resolu-
tion.

Introduction
Most satisfiability (SAT) solvers can be classed either as
complete or incomplete, and the complete algorithms may be
based on resolution or backtracking. Resolution provides a
complete proof system by refutation (Robinson 1965). The
first resolution algorithm was the Davis-Putnam (DP) pro-
cedure (Davis & Putnam 1960) which was then modified to
the Davis-Putnam-Logemann-Loveland (DPLL) backtrack-
ing algorithm (Davis, Logemann, & Loveland 1962). Be-
cause of its high space complexity, resolution alone is often
seen as impractical for real-world problems, but there are
problems on which general resolution proofs are exponen-
tially smaller than DPLL proofs (Ben-Sasson, Impagliazzo,
& Wigderson 2004). DPLL has recently been greatly en-
hanced by the use of clause learning, and by improved im-
plementation techniques.

Incomplete SAT algorithms are usually based on lo-
cal search following early work by (Gu 1992; Selman,
Levesque, & Mitchell 1992). SAT local search has subse-
quently been an active area of research, and modern algo-
rithms are considerably improved. SAT local search usually
explores a space of total variable assignments, and tries to
minimise the number of violated clauses by flipping vari-
able truth assignments, guided by various heuristics. The
best algorithms currently use some form of dynamic adjust-
ment to the objective function, usually by minimising the
sum of weights of violated clauses: clause weights are dy-
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namically adjusted so that frequently-violated clauses have
greater weights, enabling faster escape from local minima.

Local and backtrack search have complementary
strengths and weaknesses. Local search has superior scal-
ability on many large problems, but it cannot (in the form
described above) prove unsatisfiability. Backtrack search is
complete, and its use of unit propagation, clause learning,
dedicated data structures and other methods enables it
to outperform local search on some highly-structured
problems. This complementarity has inspired research on
hybrid approaches such as the use of unit propagation in
local search, and more flexible backtracking strategies.

An interesting question is: can local search be applied to
unsatisfiable problems? Such a method might be able to re-
fute (prove unsatisfiable) SAT problems that defy complete
algorithms. This was number five of the ten SAT challenges
posed by (Selman, Kautz, & McAllester 1997): design a
practical stochastic local search procedure for proving un-
satisfiability. While substantial progress has been made on
several challenges, this one remains wide open (Kautz &
Selman 2003). We describe a new form of local search
that explores a space of multisets of resolvents using gen-
eral resolution, and aims to derive the empty clause non-
systematically but greedily. We show that it will eventually
refute any unsatisfiable instance while using only bounded
memory, and demonstrate the existence of problems that it
can refute more quickly than current DPLL and systematic
resolution algorithms. This paper summarizes the key con-
tributions of our earlier paper (Prestwich & Lynce 2006).

Local search on multisets of resolvents
We begin by reviewing a theoretical result from (Esteban &
Torán 2001). Given an unsatisfiable SAT formula φ with
n variables and m clauses, a general resolution refutation
can be represented by a series of formulae φ1, . . . , φs where
φ1 consists of some or all of the clauses in φ, and φs con-
tains the empty clause. Each φi is obtained from φi−1 by
(optionally) deleting some clauses in φi−1, adding the re-
solvent of two remaining clauses in φi−1, and (optionally)
adding clauses from φ. The space of a proof is defined as
the minimum k such that each φi contains no more than k
clauses.

Intuitively each φi represents the set of active clauses at
step i of the proof. Inactive clauses are not required for fu-



1 RANGER(φ, pi, pt, pg, w, k):
2 i← 1 and φ1 ← {any k clauses from φ}
3 while φi does not contain the empty clause
4 with probability pi

5 replace a random φi clause by a
random φ clause

6 otherwise
7 resolve random φi clauses c, c′ giving r
8 if r is non-tautologous and |r| ≤ w
9 with probability pg

10 if |r| ≤ max(|c|, |c′|) replace the
longer of c, c′ by r

11 otherwise
12 replace a random φi clause by r
13 with probability pt

14 apply any satisfiability-preserving
transformation to φ, φi

15 i← i + 1 and φi+1 ← {the new formula}
16 return UNSATISFIABLE

Figure 1: The RANGER architecture

ture resolution, and after they have been used as needed they
can be deleted. It is proved in (Esteban & Torán 2001) that
the space k need be no larger than n + 1: possibly fewer
clauses than in φ itself.

The width of a proof is the length (in literals) of the largest
clause in the proof. Any non-tautologous clause must have
length no greater than n, so this is a trivial upper bound for
the width used for our algorithm. However, in practice we
may succeed even if we restrict resolvent length to a smaller
value, which may be useful for saving memory on large
problems.

Thus we can in principle find a large refutation using a
modest amount of working memory. But finding such a
proof may not be easy. We shall use the above notions as
the basis for a novel local search algorithm that performs a
randomised but biased search in the space of formulae φi.
Each φi will be of the same constant size, and derived from
φi−1 by the application of resolution or the replacement of a
clause by one taken from φ. We call our algorithm RANGER
(RANdomised GEneral Resolution).

The algorithm
The RANGER architecture is shown in Figure 1. It has six
parameters: the formula φ, three probabilities pi, pt, pg , the
width w and the size k of the formula φi.

RANGER begins with any sub-multiset φ1 ⊆ φ (we inter-
pret φ, φi as multisets of clauses). It then performs iterations
i, each either replacing a φi clause by a φ clause (with proba-
bility pi) or resolving two φi clauses and placing the result r
into φi. In the latter case, if r is tautologous or contains more
than w literals then it is discarded and φi+1 = φi. Otherwise
a φi clause must be removed to make room for r: either
(with probability pg) the removed clause is the longer of the
two parents of r (breaking ties randomly), or it is randomly
chosen. In the former case, if r is longer than the parent then
r is discarded and φi+1 = φi. At the end of the iteration, any
satisfiability-preserving transformation may (with probabil-

ity pt) be applied to φ, φi+1 or both. If the empty clause has
been derived then the algorithm terminates with the message
“unsatisfiable”. Otherwise the algorithm might not termi-
nate, but a time-out condition (omitted here for brevity) may
be added.

Local search algorithms usually use greedy local moves
that reduce the value of an objective function, and plateau
traversal moves that leave it unchanged. However, they
must also allow non-greedy moves in order to escape from
local minima. This is often controlled by a parameter known
as noise (or temperature in simulated annealing). But what
is our objective function? Our goal is to derive the empty
clause, and a necessary condition for this to occur is that φi

contains at least some small clauses. We will call a local
move greedy if it does not increase the number of literals in
φi. This is guaranteed on line 10, so increasing pg increases
the greediness of the search, reducing the proliferation of
large resolvents. There may be better forms of greediness
but this form is straightforward, and in experiments it sig-
nificantly improved performance.

RANGER has a useful convergence property: for any un-
satisfiable SAT problem with n variables and m clauses,
RANGER finds a refutation if pi > 0, pi, pt, pg < 1, w = n
and k ≥ n + 1. For a proof see (Prestwich & Lynce 2006).
The space complexity of RANGER is O(n + m + kw). To
guarantee convergence we require w = n and k ≥ n + 1 so
the complexity becomes at least O(m + n2). In practice we
may require k to be several times larger, but a smaller value
of w is often sufficient.

Lines 13–14 provide an opportunity to apply helpful
satisfiability-preserving transformations to φ or φi or both (if
we do not aim for a pure resolution refutation). We apply the
subsumption and pure literal rules in several ways. Using φi

clauses to transform φ, a feature we shall call feedback, pre-
serves useful improvements for the rest of the search. (We
believe that for these particular transformations we can set
pt = 1 without losing completeness, but we defer the proof
until a later paper.) Note that if φ is reduced then this will
soon be reflected in the φi via line 5 of the algorithm.

An example
We now illustrate RANGER’s behaviour with an example.
Consider the following CNF formula φ with five clauses
ω1, ..., ω5:

ω1 = (a ∨ b ∨ c)

ω2 = (ā ∨ b ∨ c)

ω3 = (a ∨ c̄)

ω4 = (ā ∨ c̄)

ω5 = (b̄ ∨ c)

The formula has 3 variables. Given that we must have k ≥

n + 1 we set k = 4. Suppose that φ1 contains the following
four clauses:

ω1 = (a ∨ b ∨ c)

ω2 = (ā ∨ b ∨ c)

ω4 = (ā ∨ c̄)

ω5 = (b̄ ∨ c)



Now suppose that the condition in line (4) in Figure 1 is
not satisfied, so that we proceed to line (7) and generate a
resolvent ω6 = (b ∨ c) from ω1 and ω2. Resolvent ω6 is
non-tautologous and ω6 has less than three literals, so the
conditions in line (8) of the algorithm are satisfied. Suppose
that the condition in line (9) is not satisfied, so that the algo-
rithm proceeds to line (12) and replaces clause ω4 by ω6. So
far φ1 has been transformed into the clauses:

ω1 = (a ∨ b ∨ c)

ω2 = (ā ∨ b ∨ c)

ω5 = (b̄ ∨ c)

ω6 = (b ∨ c)

Assuming that the condition in line (13) is satisfied, then
both clauses ω1 and ω2 are deleted from φ and φ1 because
they are subsumed by ω6. Then we randomly choose ω3 and
ω4 from φ to make φ2 up to four clauses:

ω3 = (a ∨ c̄)

ω4 = (ā ∨ c̄)

ω5 = (b̄ ∨ c)

ω6 = (b ∨ c)

In subsequent iterations we may infer ω7 = (c) from ω6 and
ω5, and ω8 = (c̄) from ω3 and ω4. From ω7 and ω8 the
empty clause is derived and the algorithm terminates.

Of course this refutation depends on randomly making
the correct moves. For example, before deriving the empty
clause we may have replaced ω3 and ω4 by other φ clauses.
But even after a bad move RANGER has a chance of making
the correct moves later on, after copying the same clauses
from φ to φi.

Experiments
To explore RANGER’s behaviour we performed several ex-
periments, which are briefly summarised here for space rea-
sons. Firstly, we constructed an artificial benchmark that
RANGER refutes in about 1 second, easily beating several
SAT backtrackers (ZChaff, SATZ, Siege, POSIT and Min-
isat), some of which are state-of-the-art algorithms with
clause learning yet take tens of minutes or more. The bench-
mark was a satisfiable 600-variable random 3-SAT prob-
lem augmented by a small unsatisfiable subproblem we call
HIDER:

(a1 ∨ b1 ∨ c1) (ā1 ∨ d ∨ e) (b̄1 ∨ d ∨ e) (c̄1 ∨ d ∨ e)
(a2 ∨ b2 ∨ c2) (ā2 ∨ d̄ ∨ e) (b̄2 ∨ d̄ ∨ e) (c̄2 ∨ d̄ ∨ e)
(a3 ∨ b3 ∨ c3) (ā3 ∨ d ∨ ē) (b̄3 ∨ d ∨ ē) (c̄3 ∨ d ∨ ē)
(a4 ∨ b4 ∨ c4) (ā4 ∨ d̄ ∨ ē) (b̄4 ∨ d̄ ∨ ē) (c̄4 ∨ d̄ ∨ ē)

From these clauses we can derive (d ∨ e), (d̄ ∨ e), (d ∨ ē)
or (d̄ ∨ ē) in 3 resolution steps each. For example resolving
(a1∨b1∨c1) with (ā1∨d∨e) gives (b1∨c1∨d∨e); resolv-
ing this with (b̄1∨d∨e) gives (c1∨d∨e); and resolving this
with (c̄1 ∨ d ∨ e) gives (d ∨ e). From these 4 resolvents we
can obtain (d) and (d̄) (or (e) and (ē) in 2 resolution steps.
Finally, we can obtain the empty clause in 1 more resolu-
tion step, so this problem has a refutation of size 15. We
designed HIDER to be hidden in random 3-SAT problems

as an unsatisfiable sub-problem with a short refutation. All
its clauses are ternary and no variable occurs more than 12
times. In a random 3-SAT problem from the phase transi-
tion each variable occurs an expected 12.78 times so these
clauses blend well with the problem, and a backtracker has
no obvious reason to focus on the new variables. Moreover,
a resolution refutation of HIDER requires the generation of
quaternary clauses, which (for example) SATZ’s resolution-
based preprocessor algorithm compactor does not generate.

Secondly, we found that, though a low-space proof may
exist, performance can be greatly improved by allowing
more space. Thirdly, feedback was found to be an impor-
tant feature: it reduces the automotive product configuration
problems of (Sinz, Kaiser, & Küchlin 2003) to about 1/20
of their original size via feedback, and they are refuted in
seconds or minutes depending on the instance; but without
feedback RANGER does not refute them in a reasonable time.
Fourthly, it refutes the hard unsatisfiable random 3-SAT in-
stance aim-100-2 0-no-1 in a few seconds, whereas Rish &
Dechter’s DR resolution algorithm (Rish & Dechter 2000)
takes tens of minutes, as does the TABLEAU backtracker.
But their resolution/backtrack hybrid algorithms take un-
der 1 second, as does SATZ’s compactor algorithm alone.
Fifthly, on unsatisfiable random 3-SAT problems RANGER
performs very poorly: an interesting asymmetry, given that
local search performs well on satisfiable random problems.
This may be because such refutations are almost certainly
exponentially long (Chvatal & Szemeredi 1988).

In future work we hope to find a useful class of SAT prob-
lems on which RANGER is the algorithm of choice. As with
our artificial benchmark, these problems should be unsatis-
fiable, fairly large, not susceptible to backtrack search, and
require a resolution proof of non-trivial width so that sys-
tematic resolution does not easily refute them.

Related work and conclusion
As of 2003 no work had been done on using local search
to prove unsatisfiability (Kautz & Selman 2003), but since
our paper (Prestwich & Lynce 2006) another has appeared
describing a related algorithm called GUNSAT (Audemard &
Simon 2007). The architectures of GUNSAT and RANGER
are similar but there are interesting differences in detail. For
example, whereas RANGER aims for a high rate of rather
unintelligent local moves (on our artificial benchmark it per-
forms roughly 130,000 iterations per second on a 733 MHz
Pentium II with Linux), GUNSAT takes longer to make more
intelligent moves based on a more complex objective func-
tion. GUNSAT also uses extended resolution while RANGER
uses general resolution. No convergence proof for GUNSAT
is provided, nor is it shown to beat current backtrackers on
any instance. The two algorithms have not been tested on
a common set of benchmarks so we cannot compare their
performance. Neither has yet found its “killer application”
but it should be interesting to observe future developments
in this emerging class of algorithm.

An alternative approach to refutation by local search was
explored in (Prestwich & Lynce 2006): applying standard
SAT local search to a space of (possibly incorrect) proof
graphs each represented by a clause list. In order to exploit



current SAT local search technology, this was done via a
new reformulation of the original SAT problem. A reformu-
lation was presented containing O(r2 + mr + nr) variables
and O(nr2 + rs) literals, where the original SAT problem
contains n variables, m clauses and s literals, and we aim
for a refutation of length at most r. Thus for short proofs
the meta-encoding may be economical, but RANGER’s space
complexity has the important advantage of being indepen-
dent of the length of the proof. It was shown that a prob-
lem that is hard for some backtrackers (though not others)
is solved easily by a standard local search algorithm applied
to the reformulation. However, some quite trivial problems
turn out to be hard to refute in this way. Moreover, this ap-
proach is only practical for small refutation lengths.

Other research based on hybrid approaches is more
loosely related to our work. Local search can be made com-
plete by using learning techniques (Fang & Ruml 2004). But
the aim of this approach is to improve performance on sat-
isfiable problems, not to speed up proof of unsatisfiability.
Hybrid approaches have also been tried for the more general
class of QBF formulas. For example, WalkQSAT (Gent et
al. 2003) has two main components: the QBF engine per-
forms a backjumping search based on conflict and solution
directed backjumping, whereas the SAT engine is a slightly
adapted version of the WalkSAT used to find satisfying as-
signments quickly.

Proof systems such as general resolution should in princi-
ple be faster than more simple systems such as treelike res-
olution. However, in practice such systems are rarely used,
partly because of their excessive memory consumption, but
also because no good strategy is known for applying the in-
ference rules in order to find a small proof (Alekhnovich
& Razborov 2001) though they are used within other algo-
rithms. In fact there may be no such strategy, and we suggest
that a non-systematic approach is an interesting research di-
rection for such proof systems.
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