
Encoding Max-CSP into Partial Max-SAT∗

Josep Argelich
DIEI, UdL
Lleida, Spain

Alba Cabiscol
DIEI, UdL
Lleida, Spain

Inês Lynce
IST, INESC-ID
Lisboa, Portugal

Felip Manyà
DIEI, UdL
Lleida, Spain

Abstract

We define a number of original encodings that map Max-
CSP instances into Partial Max-SAT instances. Our encod-
ings rely on the well-known direct and support encodings
from CSP into SAT. Then, we report on an experimental in-
vestigation that was conducted to compare the performance
profile of our encodings on random binary Max-CSP in-
stances. Moreover, we define a new variant of the support
encoding from CSP into SAT which produces fewer clauses
than the standard support encoding.

1 Introduction

In the last few years there has been a growing interest
in studying logical and algorithmic aspects of Max-SAT
formalisms. The most recent and relevant results can be
summarized as follows: (i) there exist Max-SAT solvers
like MaxSatz [12, 13] and MiniMaxSat [9] which solve in-
stances that are beyond the reach of the solvers existing just
five years ago; (ii) sound resolution refinements have been
incorporated intoMax-SAT solvers [11, 14], as well as good
quality underestimations of the lower bound [12, 13], (iii) a
resolution-style calculus for Max-SAT has been proven to
be complete [4, 5], (iv) formalisms like Partial Max-SAT
have been investigated for solving problems with soft con-
straints [1, 9, 2], and (v) two evaluations of Max-SAT
solvers have been performed for the first time as a co-
located event of the 2006 and 2007 editions of the Inter-
national Conference on Theory and Applications of Satisfi-
ability Testing.
In this paper, we define a number of original encod-

ings that map Max-CSP instances into Partial Max-SAT in-
stances. Our encodings rely on the well-known direct and
support encodings from CSP into SAT. Then, we report on
an experimental investigation that was conducted to com-

∗This research was funded by the MEC research projects TIN2006-
15662-C02-02, TIN2007-68005-C04-04 and Acción Integrada HP2005-
0147, and FCT research projects SATPot (POSC/EIA/61852/2004) and
SHIPs (PTDC/EIA/64164/2006).

pare the performance profile of our encodings on random
binary Max-CSP instances. Interestingly, we also define a
new variant of the support encoding from CSP into SAT,
called minimal support encoding, which produces fewer
clauses than the standard support encoding.
The objective of our research is to show that different

Max-SAT encodings for a same optimization problem may
produce substantial differences on performance, as well as
to identify features of the encodings that lead to better per-
formance profiles.
The structure of the paper is as follows. Section 2 con-

tains preliminary definitions about Max-SAT and CSP. Sec-
tion 3 surveys the support and direct encodings from CSP
into SAT, and defines the minimal support encoding. Sec-
tion 4 defines a number of original encodings from Max-
CSP into Partial Max-SAT. Section 5 reports and analyses
the experimental investigation. Section 6 presents the con-
clusions and future research directions.

2 Preliminaries

2.1 Max-SAT definitions

In propositional logic a variable xi may take values 0
(for false) or 1 (for true). A literal li is a variable xi or its
negation x̄i. A clause is a disjunction of literals, and a CNF
formula is a multiset of clauses.
An assignment of truth values to the propositional vari-

ables satisfies a literal xi if xi takes the value 1 and satisfies
a literal x̄i if xi takes the value 0, satisfies a clause if it sat-
isfies at least one literal of the clause, and satisfies a CNF
formula if it satisfies all the clauses of the formula.
The Max-SAT problem for a CNF formula φ is the prob-

lem of finding an assignment of values to propositional vari-
ables that maximizes the number of satisfied clauses. In
this sequel we often use the term Max-SAT meaning Min-
UNSAT. This is because, with respect to exact computa-
tions, finding an assignment that minimizes the number of
unsatisfied clauses is equivalent to finding an assignment
that maximizes the number of satisfied clauses.

1

We also consider the extension of Max-SAT known as
Partial Max-SAT because it is more well-suited for repre-
senting and solving NP-hard problems. A Partial Max-SAT
instance is a CNF formula in which some clauses are relax-
able or soft and the rest are non-relaxable or hard. Solving a
Partial Max-SAT instance amounts to finding an assignment
that satisfies all the hard clauses and the maximum num-
ber of soft clauses. Hard clauses are represented between
square brackets, and soft clauses are represented between
round brackets.

2.2 Max-CSP definitions

Definition 1. A Constraint Satisfaction Problem
(CSP) instance is defined as a triple 〈X ,D, C〉,
where X = {X1, . . . , Xn} is a set of variables,
D = {d(X1), . . . , d(Xn)} is a set of finite domains
containing the values the variables may take, and
C = {C1, . . . , Cm} is a set of constraints. Each constraint
Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset
of variables Si = {Xi1 , . . . , Xik

}, called the constraint
scope. The relation Ri may be represented extensionally as
a subset of the Cartesian product d(Xi1) × · · ·× d(Xik

).

Definition 2. An assignment v for a CSP instance
〈X ,D, C〉 is a mapping that assigns to every variable
Xi ∈ X an element v(Xi) ∈ d(Xi). An assign-
ment v satisfies a constraint 〈{Xi1 , . . . , Xik

}, Ri〉 ∈ C iff
〈v(Xi1), . . . , v(Xik

)〉 ∈ Ri.

Definition 3. The Constraint Satisfaction Problem (CSP)
for a CSP instance P consists in deciding whether there ex-
ists an assignment that satisfies P .
The Max-CSP problem for a CSP instance 〈X ,D, C〉 is

the problem of finding an assignment that minimizes (max-
imizes) the number of violated (satisfied) constraints.

In the sequel we assume that all CSP are unary and bi-
nary; i.e., the scope of all the constraints has at most cardi-
nality two.

3 Encoding CSP into SAT

Mappings of binary CSPs into SAT is an area of research
that has been investigated by several authors [3, 7, 10, 15, 6,
8]. They have proposed a number of encodings with differ-
ent performance profiles and achieving different degrees of
local propagation on SAT solvers. Among them, the most
well-known are the direct encoding and the support encod-
ing. They have proposed a number of encodings having
different performance profiles and achieving different de-
grees of local propagation on SAT solvers. Among them,
the most well-known are the direct encoding and the sup-
port encoding. In the rest of this section, we first define the

direct encoding and the support encoding, and then define
a new encoding from CSP into SAT called minimal support
encoding.

3.1 Direct encoding and support encoding

In the direct encoding, we associate a Boolean variable
xij with each value j that can be assigned to the CSP vari-
able Xi. Assuming that Xi has a domain of size m, the
direct encoding contains clauses that ensure that each CSP
variable Xi is given a value: for each i, xi1 ∨ · · · ∨ xim

(called at-least-one clauses), and contains clauses that rule
out any binary nogoods. For example, if X1 = 2 and
X3 = 1 is not allowed, then the clause x12 ∨ x31 (called
conflict clause) is added. We consider the version of the di-
rect encoding that adds clauses that ensure that each CSP
variable Xi takes no more than one value: for each i, j, k
with j < k, xij ∨ xik (called at-most-one clauses). These
clauses are redundant, but are considered in the literature in
order to maintain a one-to-one mapping between CSP mod-
els and SAT models.
In the support encoding, the idea is to encode into

clauses the support for a value instead of encoding con-
flicts. The support for a value j of a CSP variableXi across
a constraint is the set of values of the other variable in the
constraint which allow Xi = j. If v1, v2, . . . , vk are the
supporting values of variable Xl for Xi = j, we add the
clause xij ∨xlv1

∨xlv2
∨ · · ·∨xlvk

(called support clause).
There is one support clause for each pair of variablesXi, Xl

involved in a constraint, and for each value in the domain of
Xi. Unlike conflict clauses, a clause in each direction is
used in the literature, one for the pair Xi, Xl and one for
Xl, Xi. The support clauses on their own do not provide a
correct encoding of CSPs into SAT. To complete an encod-
ing using support clauses we need to add the at-least-one
and at-most-one clauses for each CSP variable to ensure that
each CSP variable takes exactly one value of its domain.

Example 1. The direct encoding of the CSP 〈X ,D, C〉 =
〈{X, Y }, {d(X) = {1, 2, 3}, d(Y) = {1, 2, 3}}, {X ≤
Y }〉 contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3

conflict x2 ∨ y1 x3 ∨ y1 x3 ∨ y2

and the support encoding for that CSP contains the at-least-
one clauses, the at-most-one clauses, and the following sup-
port clauses:

support x2 ∨ y2 ∨ y3 y1 ∨ x1

x3 ∨ y3 y2 ∨ x1 ∨ x2

2

The support clause for x1 is missing because it is subsumed
by y1 ∨ y2 ∨ y3, and the support clause for y3 is missing
because it is subsumed by x1 ∨ x2 ∨ x3.

3.2 Minimal support encoding

Our first contribution in this paper is to give a new ver-
sion of the support encoding, which we call minimal sup-
port encoding. Our definition follows from the observation
that the support encoding contains redundant clauses. More
precisely, given a binary constraint Ck with scope {X, Y },
it is enough to add the support clauses either for the val-
ues of X or for the values of Y ; it is not necessary to add a
clause in each direction. Despite the number of papers deal-
ing with the support encodings, this fact has gone unnoticed
so far.

Definition 4. Theminimal support encoding is like the sup-
port encoding except for the fact that, for every constraint
Ck with scope {X, Y }, we only add either the support
clauses for all the domain values of the CSP variable X
or the support clauses for all the domain values of the CSP
variable Y .

Example 2. A minimal support encoding for the CSP in-
stance from Example 1 contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3

support x2 ∨ y2 ∨ y3 x3 ∨ y3

Proposition5. The minimal support encoding is correct.

PROOF: We assume, without loss of generality, that we
add the support clauses for all the domain values of the
CSP variableX for every constraintCk with scope {X, Y }.
Given a CSP assignment, we construct its corresponding
Boolean assignment by setting the variable xi to true if the
CSP assignment assigns the value i toX ; otherwise, we set
the variable xi to false. Given a Boolean assignment that
satisfies the minimal support encoding of a CSP, we con-
struct its corresponding CSP assignment by assigning to the
CSP variableX the value i if xi is true. Note that there is ex-
actly one xi for each CSP variableX which is true because
the minimal support encoding contains the at-least-one and
at-most-one clauses. So, it is a valid CSP assignment.
We prove first that if a CSP assignment satisfies all

the constraints of a CSP instance, then its corresponding
Boolean assignment satisfies its minimal encoding. Since a
CSP assignment assigns exactly one value to each CSP vari-
able, the Boolean assignment satisfies the at-least-one and
at-most-one clauses. For every constraint Ck with scope
{X, Y }, the CSP assignment assigns a value i to X and a

value j to Y . Since (X = i, Y = j) is an allowed combi-
nation, among the clauses encoding that constraint, there is
a clause of the form xi ∨ yj ∨ · · · which is satisfied by the
Boolean encoding because yj is true. The remaining clauses
are also satisfied by the Boolean assignment because they
are of the form xl ∨ · · · , where l (= i, and the Boolean
assignment assigns the value false to all variables xl with
l (= i.
We prove now that if a Boolean assignment satisfies the

minimal support encoding of a CSP instanceP , then its cor-
responding CSP assignment satisfies P . Assume that the
CSP assignment does not satisfy P . Therefore, there exists
a constraint Ck of P with scope {X, Y } which is violated
because the CSP assignment assigns a value i to X and a
value j to Y which corresponds to a forbidden combina-
tion. In this case, there is exactly one support clause of the
form xi ∨ yj1 ∨ · · · ∨ yjk

among the support clauses en-
codingCk which is not satisfied by the Boolean assignment
because xi is true and yj1 (= yj , . . . , yjk

(= yj . The rest
of support clauses encodingCk are satisfied by the Boolean
assignment because it assigns the value false to all variables
xl with l (= i.

4 Encoding Max-CSP into Partial Max-SAT

4.1 Direct encoding for Partial Max-SAT

Given a CSP instance P , our goal is to define a version
of the direct encoding that produces a Partial Max-SAT in-
stance φ such that the minimum number of constraints of P
that are violated by a CSP assignment is exactly the same
as the minimum number of clauses of φ that are falsified by
a Boolean assignment.

Definition 6. The direct encoding of a Max-CSP instance
〈X ,D, C〉 is the Partial Max-SAT instance that contains as
hard clauses the corresponding at-least-one and at-most-one
clauses for every CSP variable in X , and contains a soft
clause xi ∨ yj for every nogood (X = i, Y = j) of every
constraint of C with scope {X, Y }.

Example 3. The Partial Max-SAT direct encoding for the
Max-CSP problem of the CSP instance from Example 1 is
as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
conflict (x2 ∨ y1) (x3 ∨ y1) (x3 ∨ y2)

Proposition7. Solving a Max-CSP instance is equivalent
to solving the Partial Max-SAT problem of its direct encod-
ing.

3

PROOF: The hard clauses ensure that there is a one-to-one
mapping between the set of CSP assignments and the set
of feasible assignments of the Partial Max-SAT instance.
Moreover, at most one of the conflict clauses that encode
a certain constraint can be falsified by a feasible assign-
ment. If the CSP assignment satisfies a constraint, then the
corresponding Boolean assignment also satisfies the con-
flict clauses that encode that constraint because there is no
clause forbidding allowed values. If the CSP assignment
violates a constraint, then the corresponding Boolean as-
signment does not satisfy the conflict clause that encodes
the forbidden values of the two variables involved in the
constraint, and satisfies the remaining clauses.

4.2 Support encoding for Partial Max-SAT

The support encoding for Partial Max-SAT may be de-
fined by adapting the minimal support encoding from CSP
into SAT:

Definition 8. Theminimal support encoding of a Max-CSP
instance 〈X ,D, C〉 is the Partial Max-SAT instance that con-
tains as hard clauses the corresponding at-least-one and
at-most-one clauses for every CSP variable in X , and con-
tains as soft clauses the support clauses of the minimal sup-
port encoding from CSP into SAT.

Example 4. A minimal Partial Max-SAT support encoding
for the Max-CSP problem of the CSP instance from Exam-
ple 1 contains the following clauses:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3) (x3 ∨ y3)

Proposition9. Solving a Max-CSP instance is equivalent
to solving the Partial Max-SAT problem of its minimal sup-
port encoding.

PROOF: Proposition 5 proves that there is one unsatisfied
clause for every violated constraint. Since the minimal
support encoding is correct, and the hard clauses ensure a
one-to-one mapping between Max-CSP and feasible Partial
Max-SAT assignments, the Max-CSP optimal solutions are
exactly the same as the Partial Max-SAT optimal solutions.

We now define how to adapt to Partial Max-SAT the sup-
port encoding from CSP into SAT.

Definition 10. The support encoding of a Max-CSP in-
stance 〈X ,D, C〉 is the Partial Max-SAT instance that con-
tains as hard clauses the corresponding at-least-one and

at-most-one clauses for every CSP variable in X , and con-
tains, for every constraintCk ∈ C with scope {X, Y }, a soft
clause of the form SX=j∨ck for every support clause SX=j

encoding the support for the value j of the CSP variableX ,
where ck is an auxiliary variable , and contains a soft clause
of the form SY =m ∨ ck for every support clause SY =m en-
coding the support for the valuem of the CSP variable Y .

Observe that we introduce an auxiliary variable for every
constraint. This is due to the fact that there are two unsat-
isfied soft clauses for every violated constraint of the Max-
CSP instance if we do not introduce auxiliary variables. It is
particularly important to have one unsatisfied clause for ev-
ery violated constraints when mapping weighted Max-CSP
instances into weighted Max-SAT instances.1 In this case,
all the clauses encoding a certain constraint have as weight
the weight associated to that constraint. When a constraint
is violated with weight w, this guarantees that there is ex-
actly one unsatisfied clause with weight w.

Example 5. The Partial Max-SAT support encoding for the
Max-CSP problem of the CSP instance from Example 1 is
as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3 ∨ c1) (y1 ∨ x1 ∨ c1)

(x3 ∨ y3 ∨ c1) (y2 ∨ x1 ∨ x2 ∨ c1)

Proposition11. Solving a Max-CSP instance is equivalent
to solving the Partial Max-SAT problem of its support en-
coding.

PROOF: By introducing auxiliary variables we ensure that
the optimal solutions of Max-CSP are exactly the same as
the optimal solutions of Partial Max-SAT. The auxiliary
variables allow to violate exactly one clause for every vi-
olated constraint.

5 Experimental results

We conducted an empirical evaluation to assess the
impact of the defined encodings on the performance of
two of the best performing Partial Max-SAT solvers:
MiniMaxSat [9] and PMS [2]. The evaluation was per-
formed on a cluster with 160 2 GHz AMD Opteron 248
Processors with 1 GB of memory.
As benchmarks we considered binary CSPs, which were

obtained with a generator of uniform random binary CSPs2

1In weighted Max-CSP (Max-SAT), each constraint (clause) has a
weight and the goal is to minimize the sum of the weights of the violated
constraints (falsified clauses).

2http://www.lirmm.fr/˜bessiere/generator.html

4

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

M
ea

n
CP

U
tim

e
in

 s
ec

on
ds

ng

<22, 4, 231, ng>

dir
supx
supl

supxy
supc

Figure 1. Experimental results for MiniMaxSat

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20

M
ea

n
CP

U
tim

e
in

 s
ec

on
ds

ng

<25, 5, 150, ng>

supx
supl
supc

Figure 2. Experimental results for MiniMaxSat

—designed and implemented by Frost, Bessière, Dechter
and Regin— that implements the so-called model B: in the
class 〈n, d, p1, p2〉 with n variables of domain size d, we
choose a random subset of exactly p1n(n−1)/2 constraints
(rounded to the nearest integer), each with exactly p2d2 con-
flicts (rounded to the nearest integer); p1 may be thought
of as the density of the problem and p2 as the tightness of
constraints. The difficulty of the instances depends on the
selected values for n, d, p1 and p2. We selected values that
allowed to solve the instances in a reasonable amount of
time in each solver.
We used the following encodings: the direct encoding

(dir), the support encoding (supxy), and three variants
of the minimal support encoding (supx, supl, supc).
The encoding supx refers to the minimal support encod-
ing of a binary CSP containing only the support clauses for
the CSP variable X and not for the variable Y for every
constraint with scope {X, Y }; we do not show results for
the encoding containing only support clauses for the CSP
variable Y because its behaviour is very close to supx for

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20

M
ea

n
CP

U
tim

e
in

 s
ec

on
ds

ng

<14, 5, 91, ng>

dir
supx
supl

supxy
supc

Figure 3. Experimental results for PMS

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14

M
ea

n
CP

U
tim

e
in

 s
ec

on
ds

ng

<16, 4, 120, ng>

dir
supx
supl

supxy
supc

Figure 4. Experimental results for PMS

the solved random instances. The encoding supl refers
to the minimal support encoding containing, for each con-
straint, the support clauses for the variable that produces
a smaller total number of literals. The encoding supc
refers to the minimal support encoding containing, for each
constraint, the support clauses for the variable that pro-
duces smaller size clauses; we give a score of 16 to unit
clauses, a score of 4 to binary clauses and a score of 1 to
ternary clauses, and choose the variable with higher sum
of scores. For instance, given the CSP instance 〈X, D, C〉,
where X = {X, Y }, d(X) = d(Y) = {1, 2, 3, 4}, C =
{CXY } = {{(1, 2), (1, 3), (1, 4)}}, supc prefers three bi-
nary support clauses x1 ∨ y2, x1 ∨ y3, x1 ∨ y4 rather than
the quaternary support clause x1∨y2∨y3∨y4, while supl
prefers x1 ∨ y2 ∨ y3 ∨ y4.
In the first experiment we solved 100Max-CSP instances

with MiniMaxSat for each data point; the instances had 22
variables, domains of 4 elements, 231 constraints and vari-
able tightness (we vary the number of nogoods (ng)). We
compared all the defined encodings of Max-CSP into Par-
tial Max-SAT. The results are shown in Figure 1.
In the second experiment we solved 100 Max-CSP in-

5

stances with MiniMaxSat for each data point; the instances
had 25 variables, domains of 5 elements, 150 constraints
and variable tightness. We compared all the defined en-
codings of Max-CSP into Partial Max-SAT. The results are
shown in Figure 2. We omit the results for the encodings
dir and supxy because they are not competitive.
In the third experiment we solved 100 Max-CSP in-

stances with PMS for each data point; the instances had 14
variables, domains of 5 elements, 91 constraints and vari-
able tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The results are shown in
Figure 3.
In the fourth experiment we solved 100 Max-CSP in-

stances with PMS for each data point; the instances had 16
variables, domains of 4 elements, 120 constraints and vari-
able tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The results are shown in
Figure 4.
We observe that support encodings from Max-CSP into

Partial Max-SAT, which have been introduced for the first
time in this paper, outperform the direct encoding for both
solvers. In MiniMaxSat, the best performing encoding is
the minimal support encoding. Among the different ver-
sions of the minimal support encoding, we observe that
supc is up to 6 times faster than the other two encodings
(supx and supl). In PMS, the best encoding for high val-
ues of tightness is the support encoding while the best en-
codings for lower values are supc and supl in Figure 4,
and supl in Figure 3.

6 Conclusions

We have defined the minimal support encoding, which is
a new encoding from CSP into SAT, and a number of orig-
inal encodings (dir, supxy, supx, supl, supc) that
map Max-CSP instances into partial Max-SAT instances,
and have provided experimental evidence that different
Max-SAT encodings for a given optimization problem may
produce substantial differences on the performance of a
solver. Since our mappings produce one unsatisfied clause
for every violated constraints, they can be easily extended to
mappings from weighted Max-CSP instances into weighted
Max-SAT instances; all the clauses encoding a certain con-
straint should have as weight the weight associated to that
constraint.
To the best of our knowledge, this is the first paper that

addresses the question of how to encode Max-CSP into
Max-SAT, and analyzes the impact of modelling on the per-
formance of Max-SAT solvers. Future research directions
include analyzing the degree of local consistency achieved
by each encoding, comparing with benchmarks other than
random binaryMax-CSP instances, and generalizing our re-
sults to n-ary constraints and many-valued Max-SAT.

References

[1] J. Argelich and F. Manyà. Exact Max-SAT solvers for over-
constrained problems. Journal of Heuristics, 12(4–5):375–
392, 2006.

[2] J. Argelich and F. Manyà. Partial Max-SAT solvers with
clause learning. In the 10th International Conference on
Theory and Applications of Satisfiability Testing, SAT-2007,
pages 28–40. LNCS 4501, 2007.

[3] C. Bessière, E. Hebrard, and T. Walsh. Local consistencies
in SAT. In the 6th International Conference on the Theory
and Applications of Satisfiability Testing, SAT-2003, pages
299–314. LNCS 2919, 2003.

[4] M. L. Bonet, J. Levy, and F. Manyà. A complete calculus for
Max-SAT. In the 9th International Conference on Theory
and Applications of Satisfiability Testing, SAT-2006, pages
240–251. LNCS 4121, 2006.

[5] M. L. Bonet, J. Levy, and F. Manyà. Resolution for Max-
SAT. Artificial Intelligence, 171(8–9):240–251, 2007.

[6] M. Gavanelli. The log-support encoding of CSP into SAT. In
the 13th International Conference on Principles and Prac-
tice of Constraint Programming, CP-2007, pages 815–822.
LNCS 4741, 2007.

[7] R. Génisson and P. Jégou. Davis and Putnam were already
checking forward. In the 12th European Conference on Ar-
tificial Intelligence (ECAI), pages 180–184, 1996.

[8] I. P. Gent. Arc consistency in SAT. In the 15th European
Conference on Artificial Intelligence (ECAI), Lyon, France,
pages 121–125, 2002.

[9] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: A new
weighted Max-SAT solver. In the 10th International Con-
ference on Theory and Applications of Satisfiability Testing,
SAT-2007, 2007.

[10] S. Kasif. On the parallel complexity of discrete relaxation
in constraint satisfaction networks. Artificial Intelligence,
45:275–286, 1990.

[11] J. Larrosa, F. Heras, and S. de Givry. A logical approach
to efficient max-sat solving. Artificial Intelligence, 172(2–
3):204–233, 2008.

[12] C. M. Li, F. Manyà, and J. Planes. Exploiting unit propa-
gation to compute lower bounds in branch and bound Max-
SAT solvers. In the 11th International Conference on Prin-
ciples and Practice of Constraint Programming, CP-2005,
pages 403–414. LNCS 3709, 2005.

[13] C. M. Li, F. Manyà, and J. Planes. Detecting disjoint incon-
sistent subformulas for computing lower bounds for Max-
SAT. In the 21st National Conference on Artificial Intelli-
gence, AAAI-2006, pages 86–91, 2006.

[14] C. M. Li, F. Manyà, and J. Planes. New inference rules
for Max-SAT. Journal of Artificial Intelligence Research,
30:321–359, 2007.

[15] T. Walsh. SAT v CSP. In the 6th International Conference
on Principles of Constraint Programming, CP-2000, pages
441–456. LNCS 1894, 2000.

6

