
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Propositional Satisfiability:

Techniques, Algorithms and Applications

Maria Inês Camarate de Campos Lynce de Faria

(Mestre)

Dissertação para obtenção do Grau de Doutor em

Engenharia Informática e de Computadores

Orientador: Doutor João Paulo Marques da Silva

Júri:
Presidente: Reitor da Universidade Técnica de Lisboa
Vogais: Doutor Toby Walsh

Doutora Carla Pedro Gomes
Doutor Pedro Manuel Corrêa Calvente de Barahona
Doutor João Paulo Marques da Silva
Doutor Nuno João Neves Mamede
Doutor José João Henriques Teixeira de Sousa

Outubro de 2004

Resumo

Nos últimos anos assistimos a um progresso notável na área de satisfação proposi-

cional (SAT), com contribuições significativas a ńıvel teórico e prático. As soluções al-

goŕıtmicas para SAT incluem, entre outras, procura local, procura por retrocesso e técnicas

de manipulação de fórmulas. Apesar dos algoritmos conhecidos requererem tempo de

execução exponencial no pior caso, as ferramentas de SAT podem actualmente ser usadas

para solucionar instâncias de problemas dif́ıceis.

Esta dissertação contribui para uma melhor compreensão das técnicas, dos algoritmos

e das aplicações de satisfação proposicional. Em primeiro lugar, introduzimos estru-

turas de dados eficientes que, apesar de não permitirem um conhecimento exacto sobre o

tamanho dinâmico de uma cláusula, são bastante precisas a determinar o número de li-

terais não atribúıdos de uma cláusula. Por outro lado, sugerimos o uso de técnicas de pré-

-processamento baseadas no teste de variáveis para manipular fórmulas proposicionais.

Propomos também o uso de retrocesso irrestrito, um algoritmo que combina as vantagens

da procura local e da procura por retrocesso. Finalmente, relacionamos dificuldade e

estrutura oculta em instâncias não satisfaźıveis de 3-SAT, onde dificuldade se traduz no

esforço de procura e estrutura oculta se traduz em sub-fórmulas não satisfaźıveis e em

subconjuntos de variáveis que permitem provar não satisfação.

Palavras Chave

Satisfação Proposicional, Algoritmos de Satisfação, Implementações Eficientes, Teste

de Variáveis, Retrocesso Irrestrito, Estrutura Oculta

i

ii

Abstract

Recent years have seen remarkable progress in propositional satisfiability (SAT), with

significant theoretical and practical contributions. Algorithmic solutions for SAT include,

among others, local search, backtrack search and formula manipulation techniques. De-

spite the worst-case exponential run time of all known algorithms, SAT solvers can cur-

rently be used to solve hard benchmark problems.

This dissertation contributes to better understanding the techniques, the algorithms

and the applications of propositional satisfiability. First, we introduce efficient lazy data

structures that, even though not being able to determine exactly the dynamic size of

a clause, are quite accurate at predicting the number of unassigned literals in a clause.

In addition, we suggest the use of probing-based preprocessing techniques for manipu-

lating propositional formulas. Furthermore, unrestricted backtracking is proposed as a

backtracking algorithm that combines both the advantages of local search and backtrack

search. Finally, we relate hardness with hidden structure in unsatisfiable random 3-SAT

formulas, where hardness is measured as the search effort and hidden structure is measured

by unsatisfiable cores and strong backdoors.

Keywords

Propositional Satisfiability, Satisfiability Algorithms, Efficient Implementations, Prob-

ing, Unrestricted Backtracking, Hidden Structure

iii

iv

Acknowledgments

Valeu a pena? Tudo vale a pena

Se a alma não é pequena.

Quem quer passar além do Bojador

Tem que passar além da dor.

Deus ao mar o perigo e o abismo deu,

Mas nele é que espelhou o céu.

Fernado Pessoa, Mar Português

In Mensagem, 1934

Finally, it is done! Why am I so sure that I took time enough doing this PhD? Because

now I know that I know nothing. And that makes me able to conduct my own research

work. I took almost four years to learn this. But I was not alone. And I would like to

thank to those who helped me making this dream come true.

To all my family, specially to my parents. They gave me life and they keep me alive.

To my brothers, who are my best friends. To my nephews, who make me think that

knowledge has to be shared. To my grand parents, who share so much knowledge.

To my supervisor, Professor João Marques Silva, with whom I learnt how to do research

work from the very beggining. But I learnt much more than that. I learnt that one should

not be afraid of making questions as long as one is not afraid of searching for the truth.

To my work colleagues, in particular to Sofia, Lúıs, Vasco and Zé Carlos. With them

I shared the best and the worst moments of my research work.

To all my friends, who make me feel that life is much more than work.

v

To all the institutions which have funded my research work:

• Fundação para a Ciência e Tecnologia

• European Union

• TNI-Valiosys

• TransEDA

• Cadence European Laboratories

• IBM

• Intelligent Information Systems Institute

• Universidade Técnica de Lisboa

• Conselho de Reitores das Universidades Portuguesas

• Fundação Calouste Gulbenkian

• Fundação Luso-Americana para o Desenvolvimento

• American Association for Artificial Intelligence

• European Coordinating Committee for Artificial Intelligence

• Cork Constraint Computation Centre

vi

Contents

1 Introduction 1

1.1 Logic . 2

1.2 Complexity . 4

1.3 Examples of SAT Encodings . 7

1.3.1 Combinational Equivalence Checking 8

1.3.2 Pigeonhole . 10

1.3.3 Latin Squares . 11

1.4 Research on SAT at a Glance . 13

1.5 Contributions . 16

1.6 Organization . 19

2 Satisfiability Algorithms 21

2.1 Definitions . 22

2.2 DP Resolution-Based Algorithm . 24

2.3 DLL Backtrack Search Algorithm . 26

2.4 Non-Chronological Backtracking . 29

2.4.1 Conflict-Directed Backjumping . 30

2.4.2 Learning and Conflict-Directed Backjumping 31

2.4.3 Clause Deletion Policy . 33

2.5 Branching Heuristics . 35

2.6 Search Strategies . 37

2.7 Experimental Results . 38

vii

2.8 Summary . 44

3 Efficient Implementations 45

3.1 Adjacency Lists Data Structures . 46

3.1.1 Assigned Literal Hiding . 46

3.1.2 The Counter-Based Approach . 47

3.1.3 Counter-Based with Satisfied Clause Hiding 48

3.1.4 Satisfied Clause and Assigned Literal Hiding 49

3.2 Lazy Data Structures . 50

3.2.1 Sato’s Head/Tail Lists . 51

3.2.2 Chaff’s Watched Literals . 52

3.2.3 Head/Tail Lists with Literal Sifting 52

3.2.4 Watched Literals with Literal Sifting 53

3.3 A Comparison of the Data Structures . 54

3.4 Handling Special Cases: Binary/Ternary Clauses 55

3.5 Do Lazy Data Structures Suffice? . 55

3.6 Experimental Results . 56

3.6.1 Lazy vs Non-Lazy Data Structures 58

3.6.2 Limitations of Lazy Data Structures 60

3.7 Recent Advances . 62

3.8 Summary . 63

4 Probing-Based Preprocessing Techniques 65

4.1 Preliminaries . 66

4.2 Motivating Examples . 67

4.2.1 Necessary Assignments . 68

4.2.2 Inferred Clauses . 71

4.3 Reasoning with Probing-Based Conditions 73

4.3.1 Satisfiability-Based Necessary Assignments 73

4.3.2 Unsatisfiability-Based Necessary Assignments 75

viii

4.3.3 Implication-Based Inferred Clauses 76

4.3.4 Satisfiability-Based Inferred Clauses 77

4.3.5 Unsatisfiability-Based Inferred Clauses 78

4.4 ProbIt: a Probing-Based SAT Preprocessor 79

4.5 Experimental Results . 80

4.6 Related Work . 84

4.6.1 Probing-Based Techniques . 85

4.6.2 Other Manipulation Techniques . 86

4.7 Summary . 87

5 Unrestricted Backtracking 89

5.1 Randomized Backtracking . 90

5.2 Heuristic Backtracking . 93

5.3 Unrestricted Backtracking . 94

5.4 Completeness Issues . 96

5.5 Experimental Results . 102

5.6 Related Work . 105

5.7 Summary . 106

6 Hidden Structure in Unsatisfiable Random 3-SAT 107

6.1 Random 3-SAT . 109

6.2 Unsatisfiable Cores . 110

6.3 Strong Backdoors . 112

6.4 zChaff on Random 3-SAT . 113

6.5 Hardness and Hidden Structure . 116

6.6 Improving Results Accuracy . 119

6.7 Summary . 126

7 Conclusions and Future Work 127

ix

x

List of Figures

1.1 Combinational circuit . 7

1.2 Generic miter circuit . 8

1.3 Miter circuit . 9

1.4 Modeling of combinational gates . 9

2.1 Chronological and non-chronological backtracking 29

2.2 Example of conflict diagnosis with clause recording 32

2.3 Computing the backtrack decision level 33

3.1 Operation of assigned literal hiding data structures 47

3.2 Operation of counter-based data structures 48

3.3 Operation of lazy data structures . 51

4.1 Table of assignments . 68

4.2 BCP(〈a, 0〉) ∩ BCP(〈a, 1〉) = 〈d, 1〉 . 69

4.3 BCP(〈a, 1〉) ∩ BCP(〈b, 0〉) ∩ BCP(〈d, 1〉) = 〈d, 1〉 70

4.4 〈e, 0〉 implies both 〈d, 0〉 and 〈d, 1〉 . 71

4.5 〈e, 0〉 makes clause ω6 = (¬a ∨ ¬d ∨ e) unsatisfied 72

4.6 Inferring clause (¬a ∨ e) . 73

4.7 Inferring clause (b ∨ c) (II) . 74

4.8 Inferring clause (b ∨ c) (I) . 75

4.9 Inferring clause (¬a ∨ d) (II) . 76

4.10 Inferring clause (¬a ∨ d) (I) . 77

xi

4.11 Percentage of variables kept after applying ProbIt 82

4.12 Percentage of clauses kept after applying ProbIt 82

5.1 Introducing randomization in a backtrack search SAT solver 91

5.2 Comparing Chronological Backtracking (CB), Non-Chronological Backtrack-

ing (NCB) and Incomplete Form of Backtracking (IFB) 95

5.3 Search tree definitions . 97

6.1 Probability of unsatisfiability of random 3-SAT formulas with 50, 100 and

150 variables, as a function of the ratio of clauses to variables 109

6.2 Number of nodes and conflicts when using zChaff for solving random 3-

SAT formulas with 50, 100 and 150 variables, as a function of the ratio of

clauses to variables . 114

6.3 Number of nodes when using zChaff for solving satisfiable and unsatisfiable

random 3-SAT formulas with 100 variables as a function of the ratio of

clauses to variables . 115

6.4 Number of nodes when using zChaff for solving unsatisfiable random 3-SAT

formulas with 50, 100 and 150 variables, as a function of the ratio of clauses

to variables . 116

6.5 Size of unsatisfiable cores and strong backdoors (%) for unsatisfiable ran-

dom 3-SAT formulas with 50, 100 and 150 variables, as a function of the

ratio of clauses to variables . 118

6.6 Regression on hardness and the number of clauses in the unsatisfiable cores

for unsatisfiable random 3-SAT formulas with 150 variables 120

6.7 Regression on hardness and the number of variables in the backdoors for

unsatisfiable random 3-SAT formulas with 150 variables 121

6.8 Regression on the number of clauses in the unsatisfiable cores and the num-

ber of variables in the backdoors for unsatisfiable random 3-SAT formulas

with 150 variables . 122

xii

6.9 Size of minimal unsatisfiable cores and strong backdoors (%) for unsatisfi-

able random 3-SAT formulas with 50 variables, as a function of the ratio

of clauses to variables . 125

xiii

xiv

List of Tables

1.1 Comparison of time complexity . 5

1.2 Evolution of SAT solvers in the last decade 14

2.1 Example instances . 40

2.2 CPU time (in seconds) . 41

2.3 Searched nodes . 42

2.4 Time and nodes for DLIS . 43

3.1 Comparison of the data structures . 54

3.2 Example instances . 57

3.3 Results for the time per decision (tpd, in msec) 58

3.4 Results for the accuracy of recorded clause identification 61

4.1 Improvements on JQuest2 . 81

4.2 Comparison with other solvers . 81

4.3 Results for the fvp-unsat-1.0 instances . 83

4.4 Results for the longmult instances . 84

5.1 Results for the SSS instances . 104

xv

xvi

List of Algorithms

2.1 Davis-Putnam procedure . 25

2.2 DLL-based backtrack search algorithm . 27

2.3 Generic look-ahead branching rule . 37

3.1 Functions for clauses with assigned literal hiding 47

3.2 Functions for clauses with counter-based approach 48

3.3 Functions for clauses with lazy data structures 50

4.1 Reasoning conditions under Boolean constraint propagation 67

5.1 Randomized backtracking . 92

5.2 Unrestricted backtracking . 94

6.1 Computing an unsatisfiable core . 110

xvii

xviii

1

Introduction

What is SAT?

Propositional SATisfiability (SAT) can be simply characterized with a couple of words:

propositional logic and computational complexity. SAT looks easy but is hard. Easy on its

formulation: SAT problems are encoded in propositional logic, a logic with very limited

expressiveness. Hard on solving: finding a solution or proving unsatisfiability has an

increasing complexity as the size of the problem increases.

Why is SAT important?

SAT is well-know for its theoretical importance. SAT was the first problem to be

proved to be NP-Complete (Cook 1971).

SAT is well-known for having many different applications: automatic test pattern

generation, combinational equivalence checking, bounded model checking, planning, graph

coloring, software verification, etc.

SAT is well-know for its remarkable improvements in the last decade. SAT solvers are

now capable of efficiently solving instances with hundreds of thousands of variables and

millions of clauses.

Why do we think this dissertation is relevant?

In this dissertation we have striven to contribute to better understanding the structure

of SAT problem instances, the organization of SAT algorithms and the efficient imple-

mentation of SAT solvers.

1

In what follows we start by having introductory sections on Logic and Complexity, two

concepts very related with the SAT problem. Afterwards, we give examples of problems

that can be formulated as SAT problems, namely combinational equivalence checking,

the pigeonhole problem and Latin squares. Next, we give a picture of SAT current re-

search status. Finally, the contributions of our thesis are explained and its organization

is described.

1.1 Logic

”I know what you’re thinking about,” said Tweedledum; ”but it isn’t so, nohow.”

”Contrariwise,” continued Tweedledee, ”if it was so, it might be; and if it were so, it would

be; but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, in Through the Looking-Glass, 1872

If we take logic to be the activity of drawing inferences (conclusions) from a body of

knowledge, then no doubt humans have been using logic for as long as they have been

thinking. On the other hand, if we take logic to be the analysis of concepts involved in

making inferences, and the identification of standards and patterns of correct inference,

then logic can be traced only back to the days of Aristotle (384-322 BC), with some parallel

development in early Hindu writings. Aristotle was the first to start writing down the

ideas and rules of what constitutes a logical process. However, it is not clear that this

increase in logical self-consciousness improved the accuracy of reasoning processes for

humankind in general.

The heart of Aristotle’s logic is the syllogism. The classic example of syllogism is as

follows: All men are mortal; Socrates is a man; therefore, Socrates is mortal. The core

of this definition is the notion of ”resulting of necessity” (ex ananks sumbainein). This

corresponds to a modern notion of logical consequence: X results of necessity from Y and

Z if it would be impossible for X to be false when Y and Z are true. Aristotle’s logical

work contains the earliest formal study of logic that we have knowledge of. It is therefore

a remarkable work that comprises a highly developed logical theory, one that was able to

dominate logic for many centuries. Indeed, the syllogistic form of logical argumentation

2

dominated logic for 2,000 years.

Historically, René Descartes (1596-1650) may have been the first mathematician to

have had the idea of using algebra, especially its techniques, for solving unknown quantities

in equations, as a vehicle for scientific exploration. However, the idea of a calculus of

reasoning was cultivated especially by Gottfried Wilhelm Leibniz (1646-1716). Though

modern logic in its present form originates with Boole and De Morgan, Leibniz was the

first to have a really distinct plan of a broadly applicable system of mathematical logic.

However, this information is in Leibniz’s unpublished work, which has only recently been

explored.

Logic’s serious mathematical formulation began with the work of George Boole (1815-

1864) in the mid-1800s. Boole made significant contributions in several areas of math-

ematics, but was immortalized for his book ”An Investigation of the Laws of Thought”

written in 1854, in which he represented logical expressions in a mathematical form now

known as Boolean algebra. Boole’s work is so impressive because, with the exception of

elementary school and a short time in a commercial school, he was almost completely

self-educated. Unfortunately, with the exception of students of philosophy and symbolic

logic, Boolean algebra was destined to remain largely unknown and unused for the better

part of a century.

In conjunction with Boole, another British mathematician, Augustus De Morgan

(1806-1871), formalized a set of logical operations now known as De Morgan laws. How-

ever, the rules we now attribute to De Morgan were known in a more primitive form by

William of Ockham (also known as William of Occam) in the 14th Century.

Gottlob Frege (1848-1925) in his 1879 Begriffsschrift extended formal logic beyond

propositional logic to include constructors such as ”all”, ”some”. He showed how to

introduce variables and quantifiers to reveal the logical structure of sentences, which may

have been obscured by their grammatical structure. For instance, ”All humans are mortal”

becomes ”All things x are such that, if x is a human then x is mortal.”

Charles Peirce (1839-1914) introduced the term ”second-order logic” and provided us

with most of our modern logical notation, including the symbols ∀ and ∃. Although Peirce

3

published his work some time after the Begriffsschrift, Frege’s contribution was not very

well known until many years later. Logicians in the late 19th and early 20th centuries were

thus more familiar with Peirce’s system of logic (although Frege is generally recognized

today as being the ”Father of modern logic”).

In 1889 Giuseppe Peano (1858-1932) published the first version of the logical axiomati-

zation of arithmetic. Five of the nine axioms he came up with are now known as the Peano

axioms. One of these axioms was a formalized statement of the principle of mathematical

induction.

In 1938 a young student called Claude E. Shannon(1916-2001) recognized Boolean

algebra’s relevance to electronics design. In a paper based on his master’s thesis at MIT,

”A Symbolic Analysis of Relay and Switching Circuits”, published in the Transactions

of the American Institute of Electrical Engineers, volume 57, pages 713-723, which was

widely circulated, Shannon showed how Boole’s concepts of TRUE and FALSE could

be used to represent the functions of switches in electronic circuits. It is difficult to

convey just how important this concept was; suffice is to say that Shannon had provided

electronics engineers with the mathematical tool they needed to design electronic circuits,

and these techniques remain the cornerstone of electronic design to this day.

In 1948, Brattain, Bardeen and Shockley, working at the Bell Telephone Laboratories,

published their invention of the transistor. Bardeen, Shockley and Brattain shared the

1956 Physics Nobel Prize for this invention. Later on, in 1959, the first planar transistor

was produced. The revolution in integrated circuits has accelerated the automation of

information technology that we enjoy today.

1.2 Complexity

Many of the games and puzzles people play are interesting because of their difficulty:

it requires cleverness to solve them. Often this difficulty can be measured mathematically,

in the form of complexity.

The complexity of a process or algorithm is a measure of how difficult it is to perform.

4

Table 1.1: Comparison of time complexity

n f(n) = n f(n) = n2 f(n) = 2n f(n) = n!

10 0.01µ s 0.1µ s 1µ s 3.63 ms

20 0.02µ s 0.4µ s 1 ms 77.1 years

30 0.03µ s 0.9µ s 1 s 8.4*1015 years

40 0.04µ s 1.6µ s 18.3 min

50 0.05µ s 2.5µ s 13 days

100 0.1µ s 10µ s 4*1013 years

1,000 1.00µ s 1 ms

The study of the complexity of algorithms, also known as complexity theory, deals with

the resources required during computation to solve a given problem. The most common

resources are time (how many steps does it take to solve a problem) and space (how much

memory does it take to solve a problem). Other resources can also be considered, such as

how many parallel processors are needed to solve a problem in parallel.

The time complexity of a problem is the number of steps that it takes to solve an

instance of the problem, as a function of the size of the input, using the most efficient

algorithm. Table 1.1 has the CPU time required for solving different functions, thus giving

a picture of time complexity.

To further understand time complexity intuitively, consider the example of an n size

instance that can be solved in n2 steps. For this example we say that the problem has

a time complexity of n2. Of course, the exact number of computer instructions will

depend on what machine or language is being used. To avoid this dependency problem,

we generally use the Big O notation. If a problem has time complexity O(n2) on one

typical computer, then it will also have complexity O(n2) on most other computers, so

this notation allows us a generalization away from the details of a particular computer.

In this case, we say that this problem has polynomial time complexity. This is also true

for all problems having O(nx) time complexity, with x being a constant.

The space complexity of a problem defines how much memory does it take to solve a

problem. For example, consider an n size instance that can be solved using 2n memory

5

units. Hence, this problem has O(n) space complexity and therefore linear complexity.

Much of complexity theory deals with decision problems. A decision problem is a

problem where the answer is always YES/NO. For example, the problem IS-PRIME is:

given an integer, return whether it is a prime number or not. Decision problems are often

considered because an arbitrary problem can always be reduced to a decision problem.

Decision problems fall into sets of comparable complexity, called complexity classes.

P and NP are the most well-known complexity classes, meaning Polynomial time and

Nondeterministic Polynomial time, respectively.

The complexity class P is the set of decision problems that can be solved by a deter-

ministic machine with a number of steps bounded by a power of the problem’s size. This

class corresponds to an intuitive idea of problems which can be effectively solved even in

the worst cases.

The complexity class NP is the set of decision problems with a nondeterministic so-

lution and with the number of steps to verify the solution being bounded by a power

of the problem’s size. In other words, all the problems in this class have the property

that their solutions can be checked effectively in polynomial time. The complexity class

Co-NP is the set of decision problems where the NO instances can be checked effectively

in polynomial time. The Co in the name stands for complement.

The class of P-problems is a subset of the class of NP-problems. The ques-

tion of whether P is the same set as NP is the most important open question in

theoretical computer science. There is even a $1,000,000 prize for solving it (see

http://www.claymath.org/millennium/). Observe that if P and NP are not equiva-

lent, then finding a solution for NP-problems requires an exhaustive search in the worst

case.

The question of whether P = NP motivates the concepts of hard and complete.

A set of problems X is hard for a set of problems Y if every problem instance in Y can

be transformed easily (i.e. in polynomial time) into some problem instance in X with the

same answer. The most important hard set is NP-hard. A problem is said to be NP-hard

if an algorithm for solving it can be translated into one for solving any other NP-problem.

6

a

b

Figure 1.1: Combinational circuit

In general, is easier to show that a problem is NP than to show that it is NP-hard.

Set X is complete for Y if it is hard for Y, and is also a subset of Y. The most

important complete set is NP-complete. A NP-complete problem is both NP (verifiable in

nondeterministic polynomial time) and NP-hard (any other NP-problem can be translated

into this problem). SAT is an example of an NP-complete problem (Cook 1971).

1.3 Examples of SAT Encodings

Many problems can be encoded in propositional logic. However, more sophisticated

logics are frequently more adequate to represent most of the problems. The only exception

is for combinational electronic circuits. Indeed, Shannon’s work in 1938 showed how

constants TRUE and FALSE could be used to represent the functions of switches in

electronic circuits.

For example, given the combinational circuit in Figure 1.1, it is clear that it can be

easily encoded in propositional logic as follows:

(a ∨ b) ∧ (¬a ∨ ¬b)

Challenging SAT problems obtained from combinational circuits usually involve verifi-

cation of properties. Sometimes errors appear only for input traces that seldom occur and

hence they may not be easily discovered through simulation. Therefore it is important to

be able to formally verify the equivalence between the circuit and the behavioral model.

In what follows we give different examples of problems that can be easily encoded

as SAT problems and further effectively solved by state-of-the-art SAT solvers. SAT

7

C

C1

2

OO

O

x
O

1m

11

21

2m

O

1

x

x

x

n

1

n

Figure 1.2: Generic miter circuit

formulas are represented, as usual, in Conjunctive Normal Form (CNF). A CNF formula

is a conjunction (∧) of clauses, a clause is a disjunction (∨) of literals, and a literal is a

variable (x) or its complement (¬x).

1.3.1 Combinational Equivalence Checking

The combinational equivalence problem consists in determining whether two given

digital circuits implement the same Boolean function. This problem arises in a significant

number of computer-aided design (CAD) applications, for example when checking the

correctness of incremental design changes (performed either manually or by a design

automation tool).

Equivalence checking is a Co-NP complete problem. Equivalence checking can be

solved using SAT by identifying a counterexample.

SAT-based equivalence checking builds upon a miter circuit. A miter circuit consists

of two circuits C1 and C2 and also a set of XOR gates and an OR gate. Consider that

the outputs of C1 are O11, . . . , O1m and the outputs of C2 are O21, . . . , O2m. Hence, the

miter circuit has m XOR gates, and the input of an XORi gate is O1i and O2i, where

i = 1, . . . , m. Finally, an OR gate links all the outputs of the XOR gates. A generic miter

circuit is given in Figure 1.2. The output of the miter is 1 iff the two circuits represent

different Boolean functions. Hence, adding the objective O = 1 to the CNF encoding

makes the SAT instance unsatisfiable iff C1 and C2 are equivalent.

Figure 1.3 gives an example of a miter including the circuit from Figure 1.1, which is

8

a

b

c

d

e

f

g=1 ?
1

4

5

2

3

Figure 1.3: Miter circuit

b
a c (a ∨ ¬c)(b ∨ ¬c)(¬a ∨ ¬b ∨ c)

(¬a ∨ c)(¬b ∨ c)(a ∨ b ∨ ¬c)ca
b

ca
b (¬a ∨ ¬b ∨ ¬c)(¬a ∨ b ∨ c)(a ∨ ¬b ∨ c)(a ∨ b ∨ ¬c)

Figure 1.4: Modeling of combinational gates

supposed to be equivalent to an XOR gate. Clearly, for this miter circuit there is no need

to add an OR gate.

To encode the circuit given above, one has first to consider the encoding of the combi-

national gates AND, OR and XOR in the CNF format given in Figure 1.4. Considering

those encodings, the miter circuit may be encoded in a CNF formula by defining a set of

clauses for each gate as follows (Tseitin 1968):

1. (¬a ∨ ¬b ∨ ¬c)(¬a ∨ b ∨ c)(a ∨ ¬b ∨ c)(a ∨ b ∨ ¬c)

2. (¬a ∨ b)(¬b ∨ d)(a ∨ b ∨ ¬d)

3. (a ∨ e)(b ∨ e)(¬a ∨ ¬b ∨ ¬e)

4. (d ∨ ¬f)(e ∨ ¬f)(¬d ∨ ¬e ∨ f)

5. (¬c ∨ ¬f ∨ ¬g)(¬c ∨ f ∨ g)(c ∨ ¬f ∨ g)(c ∨ f ∨ ¬g)

6. (g)

Observe that the number given for each set of clauses corresponds to a number in a

9

gate (see Figure 1.3). This CNF formula has no solution, meaning that the two circuits

are equivalent.

1.3.2 Pigeonhole

The first statement of the pigeonhole principle is believed to have been made by Dirich-

let in 1834. The pigeonhole principle states that if n pigeons are put into m holes, and if

n > m, then at least one hole must contain more than one pigeon. Another way of stating

this would be that m holes can hold at most m objects with one object to a hole; adding

another object will force you to reuse one of the holes.

Although the pigeonhole principle may seem to be a trivial observation, it can be used

to demonstrate unexpected results. For example, for proving that there must be at least

two people in Lisbon with the same number of hairs on their heads. Demonstration: A

typical head of hair has around 150,000 hairs. It is reasonable to assume that nobody

has more than 1,000,000 hairs on their head. There are more than 1,000,000 people in

Lisbon. If we assign a pigeonhole for each number of hairs on a head, and assign people

to the pigeonhole with their number of hairs on it, there must be at least two people with

the same number of hairs on their heads.

Another practical example of the pigeonhole principle involves the situation when there

are 15 students that wrote a dictation. John made 13 errors, each of the other students

made less than that number. Now prove that at least two students made equal number

of errors. Demonstration: To solve this problem, let us pretend that the students are

pigeons and put them in 14 holes numbered 0, 1, 2, . . . , 13, according to the number of

errors made. In hole 0 we put those students who made no errors, in hole 1 those who

made exactly 1 error, in hole 2 those who made 2 errors, and so on. Certainly, hole 13 is

occupied solely by John. Now apply the pigeonhole principle.

The SAT encoding of this problem is very straightforward. Consider we have n + 1

pigeon and n holes. Consider n∗(n+1) variables xij . Each variable xij means that pigeon

i is placed in hole j, where i = 1, . . . , n + 1 and j = 1, . . . , n. Then we have n + 1 clauses

10

which say that a pigeon has to be placed in some hole:

∀i(xi1 ∨ xi2 ∨ . . . xin)

Then for each hole we have a set of clauses ensuring that only one single pigeon is

placed into that hole:

∀j(x1j ⊕ x2j ⊕ . . . ⊕ xn+1j)

This encoding leads to a total of n ∗ (n + 1) propositional variables and (n + 1) + n ∗

(n ∗ (n + 1)/2) CNF clauses.

1.3.3 Latin Squares

The mathematician Leonhard Euler introduced Latin squares in 1783 as a new kind

of magic squares.

A Latin square of order n is an n by n array of n symbols in which every symbol occurs

exactly once in each row and column of the array. Here are two examples:

Latin square of order 2 Latin square of order 3

a b

b a

x y z

z x y

y z x

You can get many more Latin squares by permuting rows, columns, and/or symbols

in any combination.

Latin squares were originally mathematical curiosities, but statistical applications were

found early in the 20th century, e.g. experimental designs. The classic example is the use

of a Latin square configuration to place different grain varieties in test patches. Having

multiple patches for each variety helps to minimize localized soil effects.

Similar statements can be made about medical treatments. Suppose that we want

to test three drugs A, B and C for their effect in alleviating the symptoms of a chronic

disease. Three patients are available for a trial, and each will be available for three weeks.

Testing a single drug requires a week. Each patient is expected to try all the drugs and

11

each drug is supposed to be tried exactly in one patient per week. The structure of the

experimental units is a rectangular grid (which happens to be square in this case); there is

no structure on the set of treatments. We can use the Latin square to allocate treatments.

The rows of the square represent patients (P1, P2, P3) and the columns are weeks (W1,

W2, W3). For example the second patient (P2), in the third week of the trial (W3), will

be given drug B. Each patient receives all three drugs, and in each week all three drugs

are tested.

W1 W2 W3

P1 A B C

P2 C A B

P3 B C A

An incomplete or partial Latin square is a partially filled Latin square such that no

symbol occurs more than once in a row or a column. The Latin square completion problem

is the problem of determining whether the remaining entries of the array can be filled in

such a way that we obtain a complete Latin square. The Latin square completion problem

is NP-complete (Colbourn 1984) and exhibits a phase-transition behavior with an easy-

hard-easy pattern as a function of the fraction of the symbols already assigned (Achlioptas

et al. 2000).

Latin square completion problems are naturally represented as a constraint satisfaction

problem (CSP), even though efficient SAT-based formulations have also been tried in the

past (Gomes & Shmoys 2002). SAT-based encodings for the Latin square completion

problem can be distinguished between the minimal and the extended encoding. The

extended encoding adds some clauses to the minimal encoding. In both SAT encodings,

for each Latin square of order n consider n3 Boolean variables xijk, meaning that a symbol

k is assigned to cell i, j, where i, j, k = 1, 2, . . . , n.

The minimal encoding includes clauses that represent the following constraints:

1. Some symbol must be assigned to each entry:

∀ij ∨
n
k=1 xijk

12

2. No symbol is repeated in the same row:

∀ijk ∧n
l=j+1 (¬xijk ∨ ¬xilk)

3. No symbol is repeated in the same column:

∀ijk ∧n
l=i+1 (¬xijk ∨ ¬xljk)

The total number of clauses of the minimal encoding is O(n4).

The extended encoding explicitly considers each entry in the array has exactly one

symbol, by also including the following constraints:

1. Each symbol much appear at least once in each row:

∀ik ∨n
j=1 xijk

2. Each symbol much appear at least once in each column:

∀jk ∨n
i=1 xijk

3. No two symbols are assigned to the same entry:

∀ijk ∧n
l=k+1 (¬xijk ∨ ¬xijl)

Similarly to the minimal encoding, the size of the extended encoding is O(n4).

Experimental results on both encodings reveal that SAT solvers are competitive on

solving this problems, as long as the size of a problem instance is manageable. Moreover,

SAT solvers perform better on the extended encoding.

1.4 Research on SAT at a Glance

The area of propositional satisfiability has been the subject of intensive research in

recent years, with significant theoretical and practical contributions. Algorithmic solu-

tions for SAT include, among others, local search, backtrack search and formula manip-

ulation techniques. In the last decade, several different organizations of local search

and backtrack search algorithms for SAT have been proposed, in many cases allow-

ing larger problem instances to be solved in different application domains. While lo-

cal search algorithms (Selman, Levesque, & Mitchell 1992; Selman & Kautz 1993) have

13

Table 1.2: Evolution of SAT solvers in the last decade

Instance Posit’ 94 Grasp’ 96 Sato’ 98 Chaff’ 01 Siege’03

ssa2670-136 40.66 s 1.2 s 0.95 s 0.02 s 0.01 s

bf1355-638 1805.21 s 0.11 s 0.04 s 0.01 s 0.01 s

pret150 25 >7200 s 0.21 s 0.09 s 0.01 s 0.01 s

dubois100 >7200 s 11.85 s 0.08 s 0.01 s 0.01 s

aim200-2 0-no-1 >7200 s 0.01 s 0 s 0 s 0.01 s

2dlx cc mc ex bp f2 bug005 >7200 s >7200 s >7200 s 2.9 s 0.22 s

c6288 >7200 s >7200 s >7200 s >7200 s 6676.17 s

been shown to be particularly useful for random instances of SAT, recent backtrack

search algorithms have been used for solving large instances of SAT from real-world

applications. Indeed, a large number of very efficient backtrack search SAT solvers

have been proposed (Marques-Silva & Sakallah 1996; Bayardo Jr. & Schrag 1997;

Li & Anbulagan 1997; Zhang 1997; Moskewicz et al. 2001; Goldberg & Novikov 2002;

Ryan 2004), most of which based on improvements made to the original Davis-Logemann-

Loveland (DLL) backtrack search algorithm (Davis, Logemann, & Loveland 1962). These

improvements range from new search strategies, to new search pruning and reasoning

techniques, and to new fast implementations.

State-of-the-art SAT solvers can now very easily solve problem instances that more

traditional SAT solvers are known to be totally incapable of. For example, Table 1.2 gives

a picture of how SAT has evolved in the last decade, showing how problem instances have

been effectively solved as new solvers appeared. As a result, a thorough understanding of

the organization, the strategies, the techniques, and the implementation of state-of-the-art

SAT solvers is essential to help focus future SAT research, to help devise new ideas for the

next generation of solvers, to be able to solve the next generation of problem instances,

and finally to help develop innovative modeling approaches, more capable of exploiting

the organization of state-of-the-art SAT solvers.

Despite the significant improvements in state-of-the-art backtrack search SAT solvers,

several questions can be asked. Is a well-organized and well-implemented DLL algorithm

14

enough per se, or should the algorithm definitely include additional search techniques?

Which search techniques are indeed efficient for solving most problem instances? Which

search techniques cooperate effectively and which do not?

Through the last years, significant research has been done in order to clarify these

issues. Indeed, the SAT community has increased significantly in the last years, and the

SAT community meetings are definitely a proof of such evolution:

• Workshops: Sienna 1996, Paderborn 1998, Renesse 2000, Boston 2001.

• Symposium: Cincinnati 2002.

• Conferences: Santa Margarita Ligure 2003, Vancouver 2004.

Moreover, a SAT Solvers Competition has been run along the meetings of the last three

years: 2002, 2003 and 2004 (see http://www.satlive.org/SATCompetition). These

competitions establish for each year the state-of-the-art SAT solvers in different categories,

namely random, handmade and industrial categories.

The SAT community is also alive through the Internet:

• SATLive! available from http://www.satlive.org/: up-to-date links to the SAT-

isfiability problem.

• SAT-Ex available from www.lri.fr/∼simon/satex/satex.php3: the experimen-

tation web site around the satisfiability problem.

• SATLIB available from http://www.satlib.org/: a collection of benchmark prob-

lems, solvers, and tools to be used for SAT related research.

All these sites are extremely useful to those who do research on SAT. For example, if

you go to the SATLive! web page, then you will find out the following:

• People interested in SAT: there are about 300 people registered.

• Software: the most visited software has 2776 hits (siege v4).

15

• Conference Paper: the most visited conference paper has 1252 hits (Daniel Jack-

son, Mandana Vaziri. Finding Bugs with a Constraint Solver. ISSTA’00, Portland,

OR, 2000).

• Technical Report: the most visited technical report has 1222 hits (Inês Lynce and

João P. Marques-Silva, Efficient Data Structures for Fast SAT Solvers, Technical

Report RT/05/2001, INESC-ID, Portugal, November 2001).

1.5 Contributions

This PhD thesis contains four main contributions, which correspond to research work

that has been developed after my MSc thesis. Moreover, the overview chapter on Sat-

isfiability Algorithms also involved research work, from which resulted three publica-

tions (Lynce & Marques-Silva 2002a; 2003a; 2003c). Nonetheless, and even though this

work has been fundamental for the success of this PhD work, we do not consider it to be

a novel contribution.

All the four main contributions refer to propositional satisfiability algorithms. All of

them are quite distinct, but all of them have the same target: to better understand the

structure of SAT problem instances as well as the behavior of SAT solvers, with the aim

of allowing SAT solvers to efficiently solve the most challenging problem instances.

Next we describe each one of the four main contributions. In addition, we give the

most relevant references containing the work we have developed in each one of the four

topics.

1. Efficient implementations of backtrack search SAT solvers

Efficient implementations represent the most recent paradigm shift in SAT solvers.

Due to the huge size of many of the benchmark problem instances, a careful imple-

mentation can make the difference between being or not being able to solve a given

problem instance in a reasonable amount of time. Moreover, learning new clauses

may increase significantly the clause database, even though this technique is essential

for solving hard real-world instances of satisfiability. This motivates the use of very

16

efficient data structures. In the most recent years, they have evolved from intuitive

to more sophisticated data structures. In our work (Lynce & Marques-Silva 2002c;

2003b; 2005a), we compare different existing data structures and further suggest new

data structures. These new data structures, although not being able to determine

exactly the dynamic size of a clause, are quite accurate in predicting the number of

unassigned literals in a clause.

2. Preprocessing formula manipulation techniques

These techniques consist of inferring new clauses from the CNF formula, often re-

sulting in the elimination of variables. In the history of SAT, research on this topic

has been a constant. “Backtrack search + learning” is like an all purposes recipe,

whereas the use of preprocessing formula manipulation techniques implies selecting

the most adequate techniques to be applied to a given problem instance. Experi-

mental evidence suggests that there does not exist a preprocessing technique that

is useful to help solving all problem instances, or at least a significant number of

problem instances (Lynce & Marques-Silva 2001). Another motivation for the use of

preprocessing formula manipulation techniques is related with the SAT encodings.

Sometimes, the SAT encoding used for a problem is not the most efficient. Further-

more, we may obtain quite different results when using different SAT encodings. The

number of variables and clauses is one of the relevant aspects, not only due to the

size of the formula but specifically because it may considerably affect the heuristics

and the learnt clauses. Conversely, having a smaller number of variables and clauses

does not imply a problem instance is easier to solve. For example, for the Latin

square completion problem (see Section 1.3.3), the extended encoding, which ex-

tends the minimal encoding, outperforms the minimal encoding. In our work (Lynce

& Marques-Silva 2003d), we introduce a generic framework for applying formula ma-

nipulation techniques, with the aim of having a unified approach for better relating

the different techniques and consequently for more efficiently implementing them.

This generic framework is based on probing, i.e. on the formulation of hypothetical

scenarios, obtained by assigning a value to a variable, and then applying unit prop-

17

agation. Experimental results reveal that significant improvements can be achieved.

Moreover, we envision applying the same techniques during the search, although this

will bring an additional overhead.

3. Unrestricted Backtracking

This contribution is motivated by the successful use of search restarts on solv-

ing hard real-world problem instances of satisfiability (Gomes, Selman, & Kautz

1998). We started by introducing randomization in the backtrack step, thus result-

ing in a randomized backtracking (Lynce, Baptista, & Marques-Silva 2001a; Lynce

& Marques-Silva 2005b). Afterwards, random backtracking evolved to unrestricted

backtracking (Lynce, Baptista, & Marques-Silva 2001b; 2001c; Bhalla et al. 2003a;

2003b). Unrestricted backtracking includes different forms of backtracking, apart

from the traditional ones, i.e. chronological and non-chronological backtracking.

The new forms of backtracking give more freedom to the search, at the cost of

being incomplete. Nonetheless, it is possible to establish a variety of complete-

ness conditions to assure that an otherwise incomplete form of search, by including

completeness techniques, may also prove unsatisfiability if given enough CPU time.

Obtained results suggest that these techniques may be useful for efficiently solving

hard real-world instances, in particular for those instances where the use of search

restarts is also useful.

4. Hidden structure in unsatisfiable random 3-SAT

Our most recent work (Lynce & Marques-Silva 2004a; 2004b) aims to empirically

reveal hidden structure in unsatisfiable random 3-SAT instances, based on the iden-

tification of unsatisfiable cores and strong backdoors. These concepts arise from

recent developments on SAT research. Unsatisfiable cores result from the effort to

extract a proof of unsatisfiability when a given problem instance is found to be un-

satisfiable. An unsatisfiable core is a subset of clauses that are still unsatisfiable.

Strong backdoors consist of a subset of variables of the formula that once assigned

conduct the search to found that the instance is unsatisfiable. In this work we re-

18

late the number of nodes required to solve an unsatisfiable random 3-SAT instance

with the sizes of unsatisfiable cores and strong backdoors. We conclude that, for

unsatisfiable random 3-SAT instances, as the number of nodes required to solve the

instance decreases, the percentage of clauses and variables in the unsatisfiable core

or strong backdoor, respectively, also decreases.

1.6 Organization

This dissertation has a total of seven chapters. The first chapter is an introduction, and

the last chapter describes conclusions and future work. The remaining chapters contain

an overview and the main contributions of the dissertation.

After the Introduction, the second chapter overviews satisfiability algorithms. We

give a special emphasis to the concepts related to backtrack search algorithms, since

most of our contributions are related to backtrack search. Apart from the definitions,

we introduce the Davis-Putnam (DP) resolution-based algorithm, followed by the Davis-

Logemann-Loveland (DLL) backtrack search algorithm. Afterwards, a detailed descrip-

tion of non-chronological backtracking is given, including conflict-directed backjumping,

learning and clause deletion policies. Next, we briefly review branching heuristics and

search strategies. Finally, experimental results compare the different backtrack search

algorithms, namely chronological and non-chronological backtracking, as well as different

clause deletion policies.

Chapter 3 describes efficient implementations for backtrack search SAT algorithms.

We start with an overview of four traditional data structures, i.e. assigned literal hiding,

counter-based, counter-based with satisfied clause hiding, and satisfied clause and assigned

literal hiding. Afterwards, we describe the basic lazy data structures, i.e. Sato’s head/tail

lists and Chaff’s watched literals. Based on the latter, we propose new data structures:

head/tail lists with literal sifting and watched literals with literal sifting. All the data

structures are then compared, followed by a discussion on the advantages of the new data

structures. We conclude that the new data structures, although being lazy, have a more

19

accurate knowledge of the dynamic size of a clause.

Probing-based preprocessing techniques are then introduced in Chapter 4. We start

by giving examples on how probing can be used to identify necessary assignments and

to infer new clauses. Next, we describe reasoning with probing-based conditions, namely

conditions for identifying satisfiability and unsatisfiability-based necessary assignments,

and conditions for inferring implication, satisfiability and unsatisfiability-based clauses.

Finally, we introduce ProbIt, a probing-based SAT preprocessor, and give results on using

the new preprocessor.

Unrestricted backtracking is described in the next chapter. We first introduce random

backtracking, that is a special case of unrestricted backtracking. Afterwards, we charac-

terize unrestricted backtracking. Completeness conditions are then discussed, based on

a few general results on completeness. Some of these completeness conditions may allow

deleting some of the clauses. This avoids an exponential growth of the clause database.

Finally, we give experimental results.

Chapter 6 discusses hidden structure in unsatisfiable random 3-SAT formulas. We

first define unsatisfiable cores and strong backdoors. Then we describe the behavior of

random 3-SAT instances, followed by results that relate hardness with hidden structure.

Afterwards, we suggest an algorithm for giving even more accurate results on the size

of unsatisfiable cores and strong backdoors. The algorithm confirms the previous results

relating hardness with hidden structure in unsatisfiable random 3-SAT instances.

Finally, we conclude the dissertation and suggest future research work.

A final remark regarding the experimental results. Most of the chapters include exper-

imental results using one of our SAT solvers. In chronological order we have CQuest0.5,

JQuest, JQuest2 and CQuest. These solvers were developed during this PhD, and there-

fore for each of our contributions we used the most recent solver available at the time the

research work was conducted. All of these solvers are quite competitive for solving hard

real-world instances of satisfiability. JQuest, JQuest2 and CQuest entered in the SAT

Competition in 2002, 2003 and 2004, respectively, and were among the “top 10” SAT

solvers in the industrial category.

20

2

Satisfiability Algorithms

Over the years a large number of algorithms has been proposed for SAT, from the

original Davis-Putnam (DP) procedure (Davis & Putnam 1960), followed by the Davis-

Logemann-Loveland (DLL) procedure (Davis, Logemann, & Loveland 1962), to recent

backtrack search algorithms (Marques-Silva & Sakallah 1996; Bayardo Jr. & Schrag 1997;

Li & Anbulagan 1997; Zhang 1997; Moskewicz et al. 2001; Goldberg & Novikov 2002;

Ryan 2004) and to local search algorithms (Selman, Levesque, & Mitchell 1992; Selman

& Kautz 1993), among many others. Local search algorithms can solve extremely large

satisfiable instances of SAT. These algorithms have also been shown to be very efficient

on randomly generated instances of SAT. On the other hand, several improvements to the

DLL backtrack search algorithm have been introduced. These improvements have been

shown to be crucial for solving large instances of SAT derived from real-world applications,

and in particular for those where local search cannot be applied, i.e. for unsatisfiable

instances. Indeed, proving unsatisfiability is often the objective in a large number of

significant real-world applications.

In this chapter we start by providing the definitions used throughout this dissertation.

Afterwards, we describe both DP and DLL procedures. Moreover, other characteristics of

a competitive SAT solver are carefully described, namely non-chronological backtracking

with clause learning, accurate branching heuristics and efficient search strategies. Finally,

we give empirical results for the different algorithms.

21

2.1 Definitions

A conjunctive normal form (CNF) formula ϕ on n binary variables X = {x1, . . . , xn}

is the conjunction of m clauses Ω = {ω1, . . . , ωm} each of which is the disjunction of one

or more literals, where a literal is the occurrence of a variable x or its complement ¬x. A

clause having a variable and its complement is called a tautology and is always satisfied

regardless the given assignment. A clause with no literals is an empty clause and is always

unsatisfied. A clause with one literal is called unit, with two literals is called binary and

with three literals is called ternary. Moreover, a literal is pure if its complement does

not occur in the formula. For a CNF formula ϕ and for each clause ω we can also use

set notation. Hence, ω ∈ ϕ means that clause ω is a clause of formula ϕ, and l ∈ ω

means that l is a literal of clause ω. Often, variables are also denoted by a sequence of

alphabetically ordered letters, e.g. a, b, c, . . . or x, y, z.

A formula ϕ denotes a unique n-variable Boolean function f(x1, . . . , xn) and each of

its clauses corresponds to an implicate of f . Clearly, a function f can be represented by

many equivalent formulas. A binary variable can be assigned a truth value v which may

assume value 0 (or false/F) or 1 (or true/T). Also, clauses and formulas may assume

values depending on the values of the corresponding literals and clauses, respectively. The

SAT problem is concerned with finding an assignment to the arguments of f(x1, . . . , xn)

that makes the function equal to 1 or proving that the function is equal to the constant

0.

A truth assignment AX′ : X ′ ⊆ X → {true, false} for a formula ϕ is a subset of

assigned variables X ′ and their corresponding binary values. For a matter of simplicity,

an assignment is also denoted by A. A pair with a variable and a value is denoted by α.

Informally, we often refer to α as an assignment and to A as a set of assignments.

An assignment AX′ is complete iff |X ′| = n; otherwise it is partial. Moreover, ϕ[AX′]

denotes formula ϕ after setting the truth assignment AX′ and ν(ϕ[AX′]) denotes the value

of formula ϕ after setting the truth assignment AX′ . Similarly, ω[AX′] denotes clause ω af-

ter setting the truth assignment AX′ and ν(ω[AX′]) denotes the value of clause ω after set-

22

ting the truth assignment AX′ . It will be convenient to represent such assignments as sets

of pairs of variables and their assigned values; for example A = {〈x1, 0〉, 〈x7, 1〉, 〈x13, 0〉}.

Alternatively, assignments can also be denoted by A = {x1 = 0, x7 = 1, x13 = 0}. More-

over, the truth value v assigned to a variable x is denoted by ν(x). For the given example,

ν(x1) = 0, ν(x7) = 1 and ν(x13) = 0.

Evaluating a formula ϕ for a given truth assignment AX′ yields three possible outcomes:

ν(ϕ[AX′]) = 1 and we say that ϕ is satisfied and refer to AX′ as a satisfying assignment;

ν(ϕ[AX′]) = 0 in which case ϕ is unsatisfied and AX′ is referred to as an unsatisfying or

conflicting assignment; and ν(ϕ[AX′]) = U indicating that the value of ϕ is undefined,

i.e. cannot be resolved by the assignment. This last case can only happen when AX′ is a

partial assignment.

An assignment AX′ also partitions the clauses of ϕ into three sets: satisfied clauses

when ν(ω[AX′]) = 1; unsatisfied clauses when ν(ω[AX′]) = 0; and unresolved clauses when

ν(ω[AX′]) = U . The unassigned literals of a clause are referred to as its free literals. In a

search context, a clause is said to be unit if the number of its free literals is one. Similarly,

a clause with two free literals is said to be binary and a clause with three free literals is said

to be ternary. The search process is declared to reach a conflict whenever ν(ϕ[AX′]) = 0

for a given assignment AX′ .

Example 2.1 Let us consider a CNF formula ϕ having three clauses ω1, ω2 and ω3:

ω1 = (x1 ∨ x2), ω2 = (x2 ∨ ¬x3), ω3 = (x1 ∨ x2 ∨ x3)

Suppose that the current truth assignment is A = {x1 = 0, x3 = 0}. This implies having

clauses ω1 and ω3 unresolved and clause ω2 satisfied. Observe that clauses ω1 and ω3

are also unit due to x2 being the only free literal. Hence, ν(ϕ[A]) = U . Suppose that

this assignment is extended with x2 = 0, i.e. A′ = {x1 = 0, x2 = 0, x3 = 0}. Conse-

quently, clause ω3 becomes unsatisfied. This means that the search reached a conflict,

i.e. ν(ϕ[A′]) = 0. Also, suppose that in the subsequent search we have the assign-

ment A′′ = {x1 = 1, x3 = 0}. Clearly, all the clauses get satisfied and consequently

23

ν(ϕ[A′′]) = 1.

2.2 DP Resolution-Based Algorithm

Resolution provides a complete proof system by refutation (Robinson 1965). Given two

clauses ωa = (z∨x1∨ ...∨xm) and ωb = (¬z∨y1∨ ...∨yn), where all xi and yj are distinct

literals, resolution allows deriving the resolvent clause ωc = (x1 ∨ ... ∨ xm ∨ y1 ∨ ... ∨ yn),

that is, the disjunction of ωa and ωb without z and ¬z. We consider ωc to be the result of

applying res(ωa, ωb, z). The resolvent is a logical consequence of the conjunction of the

two clauses. Repeated applications of the resolution inference rule will reduce the formula

to a set of clauses having only pure literals if the instance is satisfiable or will derive the

empty clause if the instance is unsatisfiable.

Resolution was first applied to the SAT problem by Davis and Putnam (Davis &

Putnam 1960), and therefore the complete resolution procedure for SAT is often referred

to as the Davis-Putnam procedure. In addition, the Davis-Putnam procedure also applies

the unit clause rule and the pure literal rule. If a clause is unit, then the sole free literal

must be assigned value 1 for the formula to be satisfied. In this case, the value of the

literal and of the associated variable are said to be implied. Also, each implied assignment

is associated with an explanation, i.e. with the unit clause that implied the assignment.

The iterated application of the unit clause rule is often referred to as Boolean Constraint

Propagation(BCP) (Zabih & McAllester 1988). A literal is pure if its complement does

not occur in the formula. Clearly, the satisfiability of a formula is unaffected by satisfying

those literals. Moreover, no resolvents can be generated by resolving on a pure literal, but

all clauses containing a pure literal can be removed without loss. Hence, an important

improvement to the basic resolution algorithm is to first imply assignments and remove

clauses containing pure literals.

The pseudo-code for the Davis-Putnam procedure is given in Algorithm 2.1. Besides

applying the unit clause rule (apply BCP) and the pure literal rule (apply PLR), the

resolution rule is applied for eliminating the variables one-by-one (eliminate variable),

24

Algorithm 2.1: Davis-Putnam procedure

Davis-Putnam(ϕ)

(1) while TRUE

(2) if apply BCP(ϕ) == CONFLICT

(3) return UNSAT

(4) apply PLR(ϕ)

(5) if all clauses sat(ϕ)

(6) return SAT

(7) x = select variable(ϕ)

(8) eliminate variable(ϕ, x)

thus adding all possible resolvents to the set of clauses. The idea is to iteratively apply

resolution to eliminate one selected variable each time (select variable), i.e., resolution

between all pairs of clauses containing literals x and ¬x. Each step generates a sub-

problem with one fewer variable x, but possibly quadratically more clauses, depending

on the number of clauses in x and ¬x. The procedure stops applying resolution when

either the formula is found to be satisfiable or unsatisfiable. A formula is declared to be

satisfied when it contains only satisfied clauses or pure literals. A formula is declared

to be unsatisfied whenever a conflict is reached. Moreover, conflicts are detected while

applying BCP.

Example 2.2 Consider formula ϕ having the following clauses:

ω1 = (x1 ∨ x3), ω2 = (x2 ∨ x3), ω3 = (x3 ∨ x4), ω4 = (¬x1 ∨ ¬x2 ∨ ¬x3)

Let us start by applying resolution in order to eliminate variable x3. The obtained formula

ϕ′ has three clauses ω′, ω′′ and ω′′′:

ω′ = res(ω1, ω4, x3) = (x1 ∨ ¬x1 ∨ ¬x2)

ω′′ = res(ω2, ω4, x3) = (¬x1 ∨ x2 ∨ ¬x2)

ω′′′ = res(ω3, ω4, x3) = (¬x1 ∨ ¬x2 ∨ x4)

Observe that ω′ and ω′′ are tautologous clauses and therefore the remaining clause ω′′′

has only pure literals. Thus formula ϕ′ and consequently formula ϕ is satisfied.

One can readily conclude that this procedure requires exponential space in general.

In practice, many resolvents are generated but only a small part of them is used either

25

to find a solution or to prove unsatisfiability. For this reason, Davis, Longemann and

Loveland (Davis, Logemann, & Loveland 1962) replaced the resolution rule with a splitting

rule which divides the problem into two smaller subproblems. During each iteration, the

procedure selects a variable and generates two sub-formulas by assigning the two values,

true and false, to the selected variable. This procedure will be described in the next

section.

2.3 DLL Backtrack Search Algorithm

The vast majority of backtrack search SAT algorithms build upon the original back-

track search algorithm of Davis, Logemann and Loveland (DLL) (Davis, Logemann, &

Loveland 1962). The backtrack search algorithm is implemented by a search process that

implicitly enumerates the space of 2n possible binary assignments to the n problem vari-

ables.

Starting from an empty truth assignment, a backtrack search algorithm enumerates

the space of truth assignments implicitly and organizes the search to find a satisfying

assignment by searching a decision tree. Each node in the decision tree specifies an

elective assignment to an unassigned variable; such assignments are referred to as decision

assignments. A decision level is associated with each decision assignment to denote its

depth in the decision tree; the first decision assignment at the root of the tree is at decision

level 1. Assignments made before the first decision, i.e. during preprocessing, are assigned

at decision level 0. In general, the notation x = ν(x)@δ(x) is used to denote a variable

x assigned at decision level δ(x) with value ν(x). For each new decision assignment,

the decision level is incremented by 1. After each decision assignment, the unit clause

rule (Davis & Putnam 1960) is applied iteratively, i.e. BCP is applied. Also, each implied

assignment is associated with an explanation, i.e. with the unit clause that implied the

assignment.

Algorithm 2.2 gives the pseudo-code for a DLL-based backtrack search algorithm.

Given a SAT problem, formulated as a CNF formula ϕ, the algorithm conducts a search

26

Algorithm 2.2: DLL-based backtrack search algorithm

SAT(ϕ)

(1) d = 0

(2) while Decide(ϕ, d) == DECISION

(3) if Deduce(ϕ, d) == CONFLICT

(4) β = Diagnose(ϕ, d)

(5) if β == -1

(6) return UNSATISFIABLE

(7) else

(8) Backtrack(ϕ, d, β)

(9) d = β

(10) else

(11) d = d + 1

(12) return SATISFIABLE

through the space of all possible assignments to the n problem variables. At each stage of

the search, a variable assignment is selected with the Decide function. A decision level

d is then associated with each selection of an assignment. Implied assignments are iden-

tified with the Deduce function, which in most cases corresponds to the straightforward

derivation of implications by applying BCP. Whenever a clause becomes unsatisfied, the

Deduce function returns a conflict indication which is then analyzed using the Diag-

nose function. The diagnosis of a given conflict returns a backtracking decision level β,

which denotes the decision level to which the search process is required to backtrack to.

Afterwards, the Backtrack function clears all assignments (both decision and implied

assignments) from the current decision level d through the backtrack decision level β.

Furthermore, considering that the search process should resume at the backtrack level,

the current decision level d becomes β. Finally, the current decision level d is incremented.

This process is interrupted whenever the formula is found to be satisfiable or unsatisfi-

able. The formula is satisfied when all variables are assigned (meaning Decide(ϕ, d) !=

DECISION) and therefore all clauses must be satisfied. The formula is unsatisfied when

the empty clause is derived, which is implicit when the Diagnose function returns −1 as

the backtrack level.

Given the above description, it is usual to decompose the backtrack search algorithm

into three main engines:

27

1. The decision engine Decide, which selects a decision assignment at each stage of

the search. (DECISION is returned unless all variables are assigned or all clauses are

satisfied.) Observe that selected variable assignments have no explanation. This

engine is the basic mechanism for exploring new regions of the search space.

2. The deduction engine Deduce, which identifies assignments that are deemed nec-

essary, usually called implied assignments. Whenever a clause becomes unsatisfied,

implying that the current assignment is not a satisfying assignment, we have a con-

flict, and the associated unsatisfying assignment is called a conflicting assignment.

The Deduce function then returns a conflict indication which is then analyzed using

the Diagnose function.

3. The diagnosis engine Diagnose, which identifies the causes of a given conflicting

partial assignment. The diagnosis of a given conflict returns a backtracking decision

level, which corresponds to the decision level to which the search must backtrack.

This backtracking process is the basic mechanism for retreating from regions of the

search space where satisfying assignments do not exist.

Distinct organizations of SAT algorithms can be obtained by different configurations

of this generic algorithm. For example, the original DLL procedure can be captured by

this algorithms as follows:

• The decision engine randomly picks an unassigned variable x, since the DLL proce-

dure does not specify the variable upon which to branch.

• The deduction engine implements Boolean constraint propagation. If no conflicts

are detected, the pure literal rule is applied: if a variable x only occurs either as a

positive or as a negative literal, then all clauses with a literal on x become satisfied.

• The diagnosis engine implements plain backtracking (also called chronological back-

tracking). The search algorithm keeps track of which decision assignments have

been toggled. Given a conflict that occurs at decision level d, the algorithm checks

whether the corresponding decision variable x has already been toggled. If not, it

28

�������
�	��
�
������

���

�	�

����	�

��� ���

 "!$#&%(')%(*+%-,/.+ 10-*
2 0- &3546#"0- &3

7

8

9

:$;/:5<>="?)@&;(:);(A+;-B(CD=FE(A
G E-=&H5I6@"E-=&H

J

K

L M

N

O

P

Q

R)S1TFUDV&U+W(XZY6[&SFS

\6]/^+_)`&a+](bdc

Figure 2.1: Chronological and non-chronological backtracking

erases the variable assignments which are implied by the assignment on x, including

the assignment on x, and assigns the opposite value to x. In contrast, if the value of

x has already been toggled, the search backtracks to the level corresponding to the

most recent yet untoggled decision variable.

2.4 Non-Chronological Backtracking

All of the most efficient recent state-of-the-art SAT solvers (Marques-Silva & Sakallah

1996; Bayardo Jr. & Schrag 1997; Li & Anbulagan 1997; Zhang 1997; Moskewicz et al.

2001; Goldberg & Novikov 2002; Ryan 2004) utilize different forms of non-chronological

backtracking (NCB). Non-chronological backtracking, as opposed to chronological back-

tracking (CB), backs up the search tree to one of the identified causes of failure, skipping

over irrelevant variable assignments.

Example 2.3 Let us consider the CNF formula ϕ having the following four clauses:

ω1 = (x2 ∨ x4), ω2 = (x1 ∨ ¬x2 ∨ x4), ω3 = (x2 ∨ ¬x4), ω4 = (¬x1 ∨ x3)

The search tree is illustrated in Figure 2.1. (For a matter of simplicity, the unit clause

rule was not considered.) Once both x1 and x2 are assigned value 0, there are no possible

29

assignments for the remaining variables x3 and x4 that can satisfy the formula. In this

example, chronological backtracking wastes a potentially significant amount of time explor-

ing a region of the search space without solutions, only to discover, after potentially much

effort, that the region does not contain any satisfying assignments. On the other hand,

non-chronological backtracking is able to extract information from the first two conflicts

and then conclude that those conflicts are not related with the value given to x3 but rather

to the value given to x2.

Conflict-directed backjumping (Prosser 1993) is one of the most accurate forms of non-

chronological backtracking. Nonetheless, the forms of non-chronological backtracking used

in state-of-the-art SAT solvers are most related to dependency-directed backtracking (Stall-

man & Sussman 1977), since they are always associated with learning from conflicts (this

technique is often called clause learning or clause recording). Clause learning consists of

the following: for each identified conflict, its causes are identified, and a new recorded

clause (also called nogood or conflict clause) is created to explain and subsequently prevent

the identified conflicting conditions.

In the next section we start by addressing conflict-directed backjumping (Prosser 1993).

Afterwards, we describe the use of conflict-directed backjumping jointly with learning, i.e.

dependency-directed backtracking. Finally, we discuss different clause deletion policies.

2.4.1 Conflict-Directed Backjumping

Conflict-directed backjumping (CBJ) (Prosser 1993) can be considered a combination

of Gaschnig’s backjumping (BJ) (Gaschnig 1979) and Dechter’s graph-based backjumping

(GBJ) (Dechter 1990).

BJ aims performing higher jumps in the search tree, rather than backtracking to the

most recent yet untoggled decision variable. For each value of a variable vj , Gaschnig’s

algorithm obtains the lowest level for which the considered assignment is inconsistent. In

addition, BJ uses a marking technique that maintains, for each variable vj , a reference to

a variable vi with the deepest level of the different levels with which any value of vj was

found to be inconsistent. Hence, a backjump from vj is to vi. Moreover, if the domain of

30

vi is wiped-out, then the search must chronologically backtrack to vi−1.

As an improvement, Dechter’s GBJ extracts knowledge about dependencies from the

constraint graph. CBJ builds upon this idea and, based on dependencies from the con-

straints, records the set of past variables that failed consistency checks with each variable

v. This set (called conflict set in (Dechter 1990)) allows the algorithm to perform multiple

jumps.

2.4.2 Learning and Conflict-Directed Backjumping

Learning can be combined with CBJ when each identified conflict is analyzed, its causes

are identified, and a clause is recorded to explain and prevent the identified conflicting

conditions from occurring again during the subsequent search. This technique is called

dependency-directed backtracking and was proposed in (Stallman & Sussman 1977). More-

over, the newly recorded clause is then used to compute the backtrack point as the most

recent decision assignment from all the decision assignments represented in the recorded

clause. GRASP (Marques-Silva & Sakallah 1996) and relsat (Bayardo Jr. & Schrag

1997) were the first SAT solvers to successfully implement conflict-directed backjumping

enhanced with learning.

For implementing learning techniques common to some of the most competitive back-

track search SAT algorithms, it is necessary to properly explain the truth assignments

given to the propositional variables that are implied by the clauses of the CNF formula.

The antecedent assignment of x, denoted by Antec(x), is defined as the set of assignments

to variables other than x with literals in ω. Intuitively, Antec(x) designates those variable

assignments that are directly responsible for implying the assignment of x due to ω. For

example, let ω = (x1 ∨¬x2 ∨ x3) be a clause of a CNF formula ϕ, and assume the assign-

ment A = {x1 = 0, x3 = 0}. For having ν(ω[A]) = 1 we must necessarily have ν(x2) = 0.

Hence, we say that the antecedent assignment of x2, denoted by Antec(x2), is defined as

Antec(x2) = {x1 = 0, x3 = 0}.

In addition, in order to explain other NCB-related concepts, we shall often analyze

the directed acyclic implication graph created by the sequences of implied assignments

31

ω1

ω2

ω3

ω3

ω4

ω4

ω5

ω5

ω6

ω6
conflict

x2 = 1@6

x10 = 0@3

x5 = 1@6

ω9 = (¬x7 ∨ ¬x8 ∨ ¬x13)

...

ω8 = (x1 ∨ x8)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω2 = (¬x1 ∨ x3 ∨ x9)

ω1 = (¬x1 ∨ x2)

Current Truth Assignment: {x9 = 0@1, x10 = 0@3, x11 = 0@3, x12 = 1@2, x13 = 1@2, ...}
Current Decision Assignment: {x1 = 1@6}

κ

ω2

x1 = 1@6

x9 = 0@1

x6 = 1@6

x4 = 1@6

x11 = 0@3

x3 = 1@6

ω6 = (¬x5 ∨ ¬x6)

ω5 = (¬x4 ∨ x6 ∨ x11)

Figure 2.2: Example of conflict diagnosis with clause recording

generated by BCP. An implication graph I is defined as follows:

1. Each vertex in I corresponds to a variable assignment at a given decision level

x = ν(x)@δ(x).

2. The predecessors of vertex x = ν(x)@δ(x) in I are the antecedent assignments

Antec(x) corresponding to the unit clause ω that caused the value of x to be im-

plied. The directed edges from the vertices in Antec(x) to vertex x = ν(x)@δ(x)

are all labeled with ω. Vertices that have no predecessors correspond to decision

assignments.

3. Special conflict vertices are added to I to indicate the occurrence of conflicts. The

predecessors of a conflict vertex κ correspond to variable assignments that force

a clause ω to become unsatisfied and are viewed as the antecedent assignment

Antec(κ). The directed edges from the vertices in Antec(κ) to κ are all labeled

with ω.

Next, we illustrate clause recording with the example of Figure 2.2. A subset of the

CNF formula is shown, and we assume that the current decision level is 6, corresponding

to the decision assignment x1 = 1. This assignment yields a conflict κ involving clause ω6.

By inspection of the implication graph, we can readily conclude that a sufficient condition

for this conflict to be identified is

32

ω10

ω9x10 = 0@3

x9 = 0@1

x11 = 0@3

x8 = 1@6

x7 = 1@6

x13 = 1@2

1 0
6

5

3

decision
level

(b) Decision tree

x1

ω9

ω7

ω8

ω9

ω7

x1 = 0@6

x12 = 1@2

(a) Conflicting implication sequence

κ′

conflict

Figure 2.3: Computing the backtrack decision level

(x10 = 0) ∧ (x11 = 0) ∧ (x9 = 0) ∧ (x1 = 1)

By creating clause ω10 = (x10∨x11∨x9∨¬x1), we prevent the same set of assignments

from occurring again during the subsequent search.

In order to illustrate non-chronological backtracking based on clause recording, let

us now consider the example of Figure 2.3, which continues the example in Figure 2.2.

This figure illustrates non-chronological backtracking based on clause recording. After

recording clause ω10 = (x10 ∨x11 ∨x9 ∨¬x1), BCP implies the assignment x1 = 0 because

clause ω10 becomes unit at decision level 6. By inspection of the CNF formula (see

Figure 2.2), we can conclude that clauses ω7 and ω8 imply the assignments shown, and

so we obtain a conflict κ′ involving clause ω9. By creating clause ω11 = (¬x13 ∨ ¬x12 ∨

x11 ∨ x10 ∨ x9) we prevent the same conflicting conditions from occurring again. It is

straightforward to conclude that even though the current decision level is 6, all assignments

directly involved in the conflict are associated with variables assigned at decision levels

less than 6, the highest of which being 3. Hence we can backtrack immediately to decision

level 3.

2.4.3 Clause Deletion Policy

Unrestricted clause recording can in some cases be impractical. Recorded clauses

consume memory and repeated recording of clauses can eventually lead to the exhaustion

33

of the available memory. Observe that the number of recorded clauses grows with the

number of conflicts; in the worst case, such growth can be exponential in the number of

variables. Furthermore, large recorded clauses are known for not being particularly useful

for search pruning purposes (Marques-Silva & Sakallah 1996). Adding larger clauses leads

to an additional overhead for conducting the search process and, hence, it eventually costs

more than what it saves in terms of backtracks.

As a result, there are three main solutions for guaranteeing the worst case growth of

the recorded clauses to be polynomial in the number of variables:

1. We may consider n-order learning, that records only clauses with n or fewer liter-

als (Dechter 1990).

2. Clauses can be temporarily recorded while they either imply variable assignments

or are unit clauses, being discarded as soon as the number of unassigned literals is

greater than an integer m. This technique is named m-size relevance-based learn-

ing (Bayardo Jr. & Schrag 1997).

3. Clauses with a size less than a threshold k are kept during the subsequent search,

whereas larger clauses are discarded as soon as the number of unassigned literals is

greater than one. We refer to this technique as k-bounded learning (Marques-Silva

& Sakallah 1996).

Observe that we can combine k-bounded learning with m-size relevance-based learning.

The search algorithm is organized so that all recorded clauses of size no greater than k

are kept and larger clauses are deleted only after m literals have become unassigned.

More recently, a heuristic clause deletion policy has been introduced (Goldberg &

Novikov 2002). Basically, the decision whether a clause should be deleted is based not

only on the number of literals but also on its activity in contributing to conflict making

and on the number of decisions taken since its creation.

34

2.5 Branching Heuristics

The heuristics used for variable selection during the search, and consequently re-

sponsible for the organization of the decision engine, represent a key aspect of back-

track search SAT algorithms. Several heuristics have been proposed over the years,

each denoting a trade-off between computational requirements and the ability to reduce

the amount of search (Hooker & Vinay 1995). Examples of decision making heuris-

tics include M. Bohm’s heuristic (briefly described in (Buro & Kleine-Büning 1992)),

the Jeroslow-Wang branching rule (Jeroslow & Wang 1990), MOM’s heuristic (Freeman

1995), BCP-based heuristics (Bayardo Jr. & Schrag 1997; Li & Anbulagan 1997) and

variable state independent heuristics (Moskewicz et al. 2001; Goldberg & Novikov 2002;

Ryan 2004). Most heuristics try to constrain the search as much as possible, by identifying

at each step decision assignments that are expected to imply the largest number of variable

assignments. For example, the one-sided Jeroslow-Wang heuristic (Hooker & Vinay 1995;

Jeroslow & Wang 1990) assigns value true to the literal l that maximizes the following

function:

J(l) =
∑

l∈Ci

2−ni

where ni is the number of free literals in unresolved clause Ci. Hence, preference is

given to satisfying a literal that occurs in the largest number of the smallest clauses.

MOM’s heuristic (Freeman 1995), for example, also gives preference to variables that

occur in the smallest clauses, but variables are preferred if they simultaneously maximize

their number of positive and negative literals in the smallest clauses. Bohm’s heuristic

applies a similar reasoning, giving preference to variables that occur more often in the

smallest clauses and, among these variables, to those for which both positive and negative

literals occur in the smallest clauses.

Other heuristics involve BCP-based probing of each unassigned variable, in order to

decide which variable will lead to the largest number of implied assignments (Bayardo

Jr. & Schrag 1997; Freeman 1995; Li & Anbulagan 1997). Broadly, probing consists of

35

assigning both values to a variable and then propagating these values. These heuristics

are typically integrated in DLL-like SAT solvers. The main goal is to reduce the number of

decisions required either to prove satisfiability or unsatisfiability. These kind of techniques

are called look-ahead techniques, as opposed to look-back techniques (e.g. learning) that

aim to repair wrong decisions in the past. Observe that having an accurate heuristic

reduces the number of conflicts and also the number of decisions made during the search.

So, one may argue that learning is only necessary when the heuristic being used is not

accurate.

Satz (Li & Anbulagan 1997) is a SAT solver that successfully applies a look-ahead

heuristic. Algorithm 2.3 illustrates a generic look-ahead branching rule. The sequence of

if-conditions correspond to the well-known failed-literal rule (Crawford & Auton 1993). If

forcing an assignment to a variable x = ν(x) and then performing BCP yields a conflict

then x = 1 − ν(x) is a necessary assignment. Observe that a conflict is reached when

the empty clause (denoted by ()) is derived. Specific configurations lead to different look-

ahead techniques. Each configuration determines how to select the candidate variables

and how to calculate the weight-based scores (denoted by w), thus allowing to select the

next branching variable. For example, satz selects a candidate variable depending on

the predicate PROP(x, i) that returns true iff x occurs both positively and negatively in

binary clauses and x has at least i binary occurrences in ϕ. Moreover, satz branches on

the candidate variable x such that H(x) is the greatest, where

H(x) = w(¬x) ∗ w(x) ∗ 1024 + w(¬x) + w(x)

as suggested by Freeman in POSIT (Freeman 1995).

More recently, a different kind of variable selection heuristic (referred to as

VSIDS, Variable State Independent Decaying Sum) has been proposed by Chaff au-

thors (Moskewicz et al. 2001). One of the reasons for proposing this new heuristic was

the introduction of lazy data structures (to be described in the next chapter), where the

knowledge of the dynamic size of a clause is not accurate. Hence, the heuristics described

36

Algorithm 2.3: Generic look-ahead branching rule

Look-Ahead Branching Rule(ϕ)

(1) foreach candidate variable x

(2) ϕ′ = apply BCP(ϕ ∪ {x})

(3) ϕ′′ = apply BCP(ϕ ∪ {¬x})

(4) if () ∈ ϕ′ and () ∈ ϕ′′

(5) return UNSATISFIABLE

(6) if () ∈ ϕ′

(7) ϕ = ϕ′′

(8) else if () ∈ ϕ′′

(9) ϕ = ϕ′

(10) else

(11) w(x) = diff(ϕ′, ϕ)

(12) w(¬x) = diff(ϕ′′, ϕ)

(13) branch(variable with best w-based score)

above cannot be utilized.

VSIDS selects the literal that appears most frequently over all the clauses, which

means that the metrics only have to be updated when a new recorded clause is created.

More than to develop an accurate heuristic, the motivation has been to design a fast (but

dynamically adaptive) heuristic. In fact, one of the key properties of this strategy is the

very low overhead, due to being independent of the variable state. Two chaff-like SAT

solvers, BerkMin (Goldberg & Novikov 2002) and siege (Ryan 2004), have improved the

VSIDS heuristic. BerkMin also measures clauses’ age and activity for deciding the next

branching variable, whereas siege gives priority to assigning variables on recently recorded

clauses.

2.6 Search Strategies

Search strategies are used to implement different organizations of the search process.

The most well-known strategy consists in randomizing the variable selection heuristic

used for selecting variables and also the values to assign to them (Bayardo Jr. & Schrag

1997). Although intimately related with randomizing variable selection heuristics, ran-

domization is also a key aspect of search restart strategies (Baptista & Marques-Silva 2000;

Gomes, Selman, & Kautz 1998). Randomization ensures with high probability that differ-

37

ent sub-trees are searched each time the backtrack search algorithm is restarted. Random-

ization can be also integrated in the backtrack step of a backtrack search algorithm (Lynce,

Baptista, & Marques-Silva 2001a), allowing the search to randomly backtrack after a con-

flict is found. Random backtracking will be further described in Chapter 5.

Current state-of-the-art SAT solvers already incorporate some of the above forms of

randomization (Baptista & Marques-Silva 2000; Moskewicz et al. 2001; Goldberg &

Novikov 2002). In these SAT solvers, variable selection heuristics are randomized and

search restart strategies are utilized. Randomized restarts have been shown to yield dra-

matic improvements on satisfiable instances that exhibit heavy-tailed behavior (Gomes,

Selman, & Kautz 1998). Also, completeness conditions have been established to apply

random restarts on solving unsatisfiable instances (Baptista & Marques-Silva 2000).

Algorithm portfolio design (Gomes & Selman 1997) is another search strategy. This

work was motivated by observing that the runtime and the performance of stochastic

algorithms can vary dramatically on solving the same instance. Nonetheless, randomized

algorithms are among the best current algorithms for solving satisfiable computationally

hard problems. Hence, the main goal is to improve the performance of algorithms by

combining them into a portfolio to exploit stochasticity. Combining different algorithms

into a portfolio only makes sense if they exhibit different probability profiles and none of

them dominates the others over the whole spectrum of problem instances.

2.7 Experimental Results

The experimental results given below were obtained using the JQuest SAT solver,

a Java framework of SAT algorithms. JQuest implements a significant number of the

most well-known SAT techniques, and can be used to conduct unbiased experimental

evaluations of SAT techniques and algorithms. The idea is to experimentally evaluate the

different approaches in a controlled experiment that ensures that only specific differences

are evaluated. Besides differing data structures and coding styles, each existing SAT

solver implements its own set of search techniques, strategies and heuristics. Hence, a

38

comparison between state-of-the-art SAT solvers hardly guarantees meaningful results.

In order to perform this comparison using the JQuest SAT solver, instances

were selected from several classes of instances available from SATLIB web site

http://www.satlib.org/ (see Table 2.1). For each problem instance, we indicate the

application domain, the number of variables, the number of clauses and whether the in-

stance is satisfiable. In all cases, the problem instances chosen can be solved with several

thousand decisions by the most efficient solvers, usually taking a few tens of seconds, and

thus being significantly hard. For this reason, different algorithms can provide significant

variations on the time required for solving a given instance. In addition, we should also

observe that the problem instances selected are intended to be representative, since each

resembles, in terms of hardness for SAT solvers, the typical instance in each class of prob-

lem instances. For the results shown a P-IV@1.7 GHz Linux machine with 1 GByte of

physical memory was used. The Java Virtual Machine used was SUN’s HotSpot JVM for

JDK1.4. The CPU time was limited to 1500 seconds.

The first table of results (Table 2.2) shows the CPU time required to solve each problem

instance. (Instances that were not solved in the allowed CPU time are marked with —.)

For the algorithms considered: CB denotes the chronological backtracking search SAT

algorithm (based on DLL), CBJ denotes the DLL-CBJ SAT algorithm and CBJ+cr

denotes the CBJ SAT algorithm with clause recording. Moreover, a variety of clause

deletion policies were considered, depending on the value of k, where k defines the k-

bounded learning procedure used (see Section 2.4.3). For instance, +cr10 means that

recorded clauses with size greater than 10 are deleted as soon as they become unresolved

(i.e. not satisfied with more than one unassigned literal), whereas +crAll means that all

the recorded clauses are kept.

Table 2.2 reveals interesting trends, and several conclusions can be drawn:

• Clearly, CB and CBJ have in general similar behavior (except for bf0432-079 and

data encryption standard instances).

• The CBJ+cr algorithms are in general clearly more efficient than the other algo-

39

Table 2.1: Example instances

Application Domain Selected Instance # Variables #Clauses Satisfiable?

Circuit Testing
(Dimacs)

bf0432-079 1044 3685 N
ssa2670-141 4843 2315 N

Inductive
Inference(Dimacs)

ii16b2 1076 16121 Y
ii16e1 1245 14766 Y

Parity
Learning(Dimacs)

par16-1-c 317 1264 Y
par16-4 1015 3324 Y

Graph Colouring
flat200-39 600 2237 Y
sw100-49 500 3100 Y

Quasigroup
qg3-08 512 10469 Y
qg5-09 729 28540 N

Blocks World
2bitadd 12 708 1702 Y
4blocksb 410 24758 Y

Planning-Sat
logistics.a 828 6718 Y
bw large.c 3016 50457 Y

Planning-Unsat
logistics.c 1027 9507 N
bw large.b 920 11491 N

Bounded Model
Checking

barrel5 1407 5383 N
queueinvar16 1168 6496 N
longmult6 2848 8853 N

Superscalar
Processor
Verification

dlx2 aa 490 2804 N
dlx2 cc a bug17 4847 39184 Y
2dlx cc mc ex bp f2 bug006 4824 48215 Y
2dlx cc mc ex bp f2 bug010 5754 60689 Y

Data Encryption
Standard

cnf-r3-b2-k1.1 5679 17857 Y
cnf-r3-b4-k1.2 2855 35963 Y

rithms. Indeed, for almost all the instances CBJ+cr achieves remarkable improve-

ments, when compared with CB or with CBJ. Instances flat200-39 and barrel5 are

the only exceptions. (For instance barrel5, this is only true for CBJ+cr with small

values of k.)

• Some of the instances that are not solved by CBJ in the allowed CPU time (e.g

ii16b2 and dlx2 cc a bug17), also need a significant amount of time to be solved by

k-bounded learning with a small value of k.

• For instance flat200-39, recorded clauses result in an additional search effort to find

a solution.

• From a practical perspective, unrestricted clause recording is not necessarily a bad

approach.

40

Table 2.2: CPU time (in seconds)

Instance
CB CBJ

CBJ+cr

+cr0 +cr5 +cr10 +cr20 +cr50 +cr100 +crAll

bf0432-079 —– 41.74 5.18 2.78 2.97 2.70 1.53 1.44 1.45

ssa2670-141 —– —– 1.21 0.87 0.81 0.52 0.55 0.54 0.56

ii16b2 —– —– —– —– 857.61 302.63 158.63 141.41 141.05

ii16e1 —– —– 20.58 26.75 20.40 12.65 12.89 15.96 11.86

par16-1-c 65.92 77.06 19.91 14.75 16.07 16.78 18.19 18.08 18.13

par16-4 14.88 20.59 11.51 8.49 8.77 9.34 7.16 7.20 7.14

flat200-39 8.44 8.75 97.35 255.04 85.19 114.05 67.55 67.00 67.19

sw100-49 —– —– 1.94 13.48 1.26 2.18 0.73 0.74 0.71

qg3-08 2.29 2.65 0.86 0.88 0.91 1.00 1.07 1.30 1.32

qg5-09 13.28 8.61 1.35 1.29 1.06 1.17 1.16 1.21 1.15

2bitadd 12 —– —– —– —– —– —– 87.68 50.74 50.93

4blocksb —– —– 31.23 30.25 39.62 29.66 16.34 20.33 31.75

logistics.a —– —– 2.98 1.87 1.62 1.65 1.61 1.63 1.68

bw large.c —– —– 76.03 55.13 36.41 38.37 43.71 38.03 38.06

logistics.c —– —– 26.88 7.24 4.60 15.40 10.22 10.23 10.25

bw large.b 8.27 4.78 1.60 0.59 0.61 0.64 0.61 0.62 0.62

barrel5 99.49 132.37 171.94 279.31 36.35 19.80 23.43 24.00 21.99

queueinvar16 —– —– 23.36 21.39 15.74 15.48 8.05 8.08 8.12

longmult6 —– —– 27.66 23.63 26.20 29.16 32.32 31.74 32.02

dlx2 aa —– —– 54.74 36.21 37.96 9.80 6.43 6.62 6.60

dlx2 cc a bug17 —– —– 430.31 —– —– 500.25 220.06 6.48 6.54

2dlx ... bug006 —– —– 17.29 14.32 3.87 2.27 2.27 2.23 2.22

2dlx ... bug010 —– —– 3.32 4.13 3.83 5.31 4.55 2.03 1.93

cnf-r3-b2-k1.1 802.90 19.37 3.05 3.13 2.39 2.58 2.40 2.16 3.90

cnf-r3-b4-k1.2 405.98 12.62 5.42 5.39 5.48 5.12 4.89 4.45 3.91

Table 2.3 gives the results for the number of searched nodes, for each instance and

for the different configurations. It is plain from the results that CB and CBJ in general

need to search more nodes to find a solution than the other algorithms. This can be

explained by the effect of the recorded clauses. Besides explaining an identified conflict,

clauses are often re-used, either for yielding conflicts or for implying variable assignments,

introducing significant pruning in the search tree. Moreover, other conclusions can be

established from the results on the searched nodes:

• For the par instances, CB and CBJ have the same or an approximate number of

search nodes for these instances. This is explained by the fact that there are none

or just a few backjumps during the search.

41

Table 2.3: Searched nodes

Instance
CB CBJ

CBJ+cr

+cr0 +cr5 +cr10 +cr20 +cr50 +cr100 +crAll

bf0432-079 —– 98824 3939 1950 2010 1600 1168 1188 1188

ssa2670-141 —– —– 2882 1988 1480 806 736 698 698

ii16b2 —– —– —– —– 101451 32923 12188 10573 10573

ii16e1 —– —– 20872 24714 17271 13869 8117 8442 7869

par16-1-c 52800 52800 11307 7249 7524 5255 5364 5364 5364

par16-4 10673 10246 4157 2676 2745 2467 1919 1919 1919

flat200-39 6286 5427 139264 287983 51308 40888 26428 25738 25738

sw100-49 —– —– 4596 44247 2370 3748 1450 1450 1450

qg3-08 703 703 220 220 242 214 222 282 282

qg5-09 1578 1547 373 329 318 337 337 337 337

2bitadd 12 —– —– —– —– —– —– 21244 11238 11238

4blocksb —– —– 5559 5007 6205 5009 2618 2491 3363

logistics.a —– —– 32872 16999 14899 15185 15185 15185 15185

bw large.c —– —– 6137 5132 2763 2878 3000 2783 2783

logistics.c —– —– 55721 18839 14520 16444 15441 15441 15441

bw large.b 1431 1112 293 128 195 195 195 195 195

barrel5 24727 24664 90115 141953 14684 8731 10396 12315 5985

queueinvar16 —– —– 45053 41510 24842 19557 8460 8506 8083

longmult6 —– —– 7407 5482 5666 5507 5019 4729 4725

dlx2 aa —– —– 319120 204995 208725 21036 10062 10035 10035

dlx2 cc a bug17 —– —– 446626 —– —– 212816 85713 3383 3383

2dlx ... bug006 —– —– 32297 25259 7775 3288 3227 3123 3123

2dlx ... bug010 —– —– 10086 19002 14358 13229 8533 3547 3522

cnf-r3-b2-k1.1 219037 6273 1168 1138 872 942 825 667 1221

cnf-r3-b4-k1.2 57843 2216 1011 1012 1010 943 910 776 729

• For instances logistics.a, bw large.b and qg5-09, the search needs the same number

of nodes for increasing values of k, since only small-size clauses are recorded.

• Usually more recorded clauses imply less searched nodes and less time needed to find

a solution. (Even though the reduction in the number of nodes is more significant

than the reduction in the amount of time, due to the overhead introduced by the

management of additional clauses.)

Overall, the effect of clause recording is clear, and in general dramatic. The results

clearly indicate that clause recording is an essential component of current state-of-the-art

SAT solvers.

Finally, we also evaluate whether a different variable ordering heuristic could have

affected the results. For the above results we have applied the variable selection heuris-

42

Table 2.4: Time and nodes for DLIS

Instance Time Nodes
CB CBJ CB CBJ

bf0432-079 —– 437.12 —– 275336

ssa2670-141 —– 363.53 —– 244848

ii16b2 1220.50 630.05 53667 37141

ii16e1 —– 30.32 —– 3277

par16-1-c 41.15 39.56 8212 7906

par16-4 130.45 132.49 13786 13556

flat200-39 45.26 8.91 9437 2756

sw100-49 —– —– —– —–

qg3-08 323.92 184.29 35120 30943

qg5-09 —– —– —– —–

2bitadd 12 —– 49.79 —– 51900

4blocksb —– —– —– —–

logistics.a —– —– —– —–

bw large.c —– —– —– —–

logistics.c —– —– —– —–

bw large.b 49.31 17.46 1794 986

barrel5 379.46 411.72 25624 25731

queueinvar16 —– —– —– —–

longmult6 —– —– —– —–

dlx2 aa —– —– —– —–

dlx2 cc a bug17 —– —– —– —–

2dlx ... bug006 —– —– —– —–

2dlx ... bug010 0.63 0.61 718 711

cnf-r3-b2-k1.1 —– —– —– —–

cnf-r3-b4-k1.2 —– —– —– —–

tic VSIDS. Given that CB and CBJ do not record clauses, for these algorithms VSIDS

corresponds to SLIS (Static Largest Individual Sum). SLIS is a heuristic that selects the

literal that appears most frequently in the original clauses; in this case, the metrics are

not dynamically changed during the search.

For the results in Table 2.4 we used the DLIS (Dynamic Largest Individual Sum of

literals) heuristic (Marques-Silva 1999). The intuition is that CB(J) cooperates poorly

with a simple heuristic such as SLIS. On the contrary, VSIDS cooperates effectively with

CBJ+cr, because learning allows correcting early wrong variable orderings. For this

reason, we decided to experiment DLIS, a more elaborated heuristic. The obtained results

are significantly better than those obtained with SLIS (namely for CBJ), but are still far

from being competitive with CBJ+cr results.

43

2.8 Summary

In this chapter we give a perspective on the evolution of SAT algorithms. SAT algo-

rithms can be categorized as incomplete or complete algorithms. Local search and back-

track search are examples of incomplete and complete algorithms, respectively. Although

incomplete algorithms are quite efficient, only complete algorithms are able to prove un-

satisfiability. Hence, complete algorithms are preferable for solving hard real-world SAT

instances, most of which are unsatisfiable.

The most popular complete algorithms in the history of SAT are the resolution-based

Davis-Putnam procedure (DP) (Davis & Putnam 1960) and the backtrack search Davis-

Logemann-Loveland procedure (DLL) (Davis, Logemann, & Loveland 1962). Broadly, the

resolution rule in DP is replaced by the splitting rule in DLL. Even though resolution is

a complete proof procedure for SAT, it is not competitive in practice, due to requiring

exponential space in general.

The DLL procedure was further developed into different forms of non-chronological

backtracking. Conflict-directed backjumping (Prosser 1993) is a sophisticated form of

non-chronological backtracking, which can be enhanced with learning (Stallman & Suss-

man 1977; Marques-Silva & Sakallah 1996; Bayardo Jr. & Schrag 1997). Indeed, non-

chronological backtracking with learning is currently the most competitive form of back-

tracking. Experimental results give empirical evidence on the usefulness of using learning

jointly with non-chronological backtracking on solving hard real-world SAT instances.

In addition, DLL-based algorithms include different branching heuristics, which define

the variable to be selected by the splitting rule. Existing branching heuristics range

from the most sophisticated to the most simple ones. Also, different search strategies

are currently used to implement different organizations of the search process. Random

restarts are an example of a very efficient search strategy.

Other approaches for solving satisfiability problems are particularly efficient for solving

instances of specific problem domains. For example, BDD-based approaches are used for

solving unsatisfiable hardware verification problems (Uribe & Stickel 1994).

44

3

Efficient Implementations

Implementation issues for SAT solvers include the design of suitable data structures for

storing clauses, variables and literals. The implemented data structures dictate the way

BCP and conflict analysis are implemented and have a significant impact on the run time

performance of the SAT solver. Recent state-of-the-art SAT solvers are characterized

by using very efficient data structures, intended to reduce the CPU time required per

each node in the search tree. Traditional SAT data structures are accurate, meaning

that is possible to know exactly the value of each literal in the clause. Examples of

traditional data structures, also called adjacency lists data structures, can be found in

GRASP (Marques-Silva & Sakallah 1996), relsat (Bayardo Jr. & Schrag 1997) and satz (Li

& Anbulagan 1997). Conversely, most recent SAT data structures are not accurate, and

therefore are called lazy. Examples of efficient lazy data structures include the head/tail

lists used in Sato (Zhang 1997) and the watched literals used in Chaff (Moskewicz et al.

2001).

The main purpose of this chapter is twofold. First, to review existing SAT data

structures. Second, to propose new data structures, that aim to be less lazy and so

may be preferable for the next generation SAT solvers. Our description of SAT data

structures is organized in two main categories: adjacency lists data structures and lazy

data structures. Afterwards, we analyze optimizations that can be applied to most data

structures, by special handling of small clauses. Also, we discuss the effect of lazy data

45

structures in accurately predicting dynamic clause size (i.e. the number of unassigned

literals in a clause). Experimental results are then provided for comparing the different

data structures. Finally, we discuss the most recently proposed data structures, which

have been introduced after our work has been developed.

3.1 Adjacency Lists Data Structures

Most backtrack search SAT algorithms represent clauses as lists of literals, and asso-

ciate with each variable x a list of the clauses that contain a literal in x. Clearly, after

assigning a variable x the clauses with literals in x are immediately aware of the assign-

ment of x. The lists associated with each variable can be viewed as containing the clauses

that are adjacent to that variable. In general, we use the term adjacency lists to refer

to data structures in which each variable x contains a complete list of the clauses that

contain a literal in x.

In the following sub-sections, different alternative implementations of adjacency lists

are described. In each case, we are interested in being able to accurately and efficiently

identify when clauses become satisfied, unsatisfied or unit.

3.1.1 Assigned Literal Hiding

One approach to identify satisfied, unsatisfied or unit clauses consists of extracting

from the clause’s list of literals all the references to unsatisfied and satisfied literals. These

references are added to dedicated lists associated with each clause. As a result, satisfied

clauses contain one or more literal references in the list of satisfied literals; unsatisfied

clauses contain all literal references in the list of unsatisfied literals; finally, unit clauses

contain one unassigned literal and all the other literal references in the list of unsatisfied

literals. Algorithm 3.1 has the pseudo-code for these functions.

This data structure is illustrated in Figure 3.1. Whenever a literal is assigned, it is

moved either to the satisfied or unsatisfied literals list. In the given example, the ternary

clause is identified as unit when only one literal is still unassigned and the other two

literals are unsatisfied. Observe that when the search backtracks the same operations are

46

Algorithm 3.1: Functions for clauses with assigned literal hiding

Is Satisfied Clause(ω)

(1) return num satisfied literals(ω) > 0

Is Unsatisfied Clause(ω)

(1) return num satisfied literals(ω) == 0 and

(2) num unassigned literals(ω) == 0

Is Unit Clause(ω)

(1) return num unassigned literals(ω) == 1 and

(2) num satisfied literals(ω) == 0

Satisfied

Unsatisfied

Unassigned Unassigned

Satisfied

Unsatisfied

Unassigned

Satisfied

Unsatisfied

Unassigned

Satisfied

Unsatisfied

satisfied clauseunit clause

unassigned unsatisfied satisfied

Figure 3.1: Operation of assigned literal hiding data structures

performed on the reverse order.

As will be shown by the experimental results in Section 3.6, this organization of adja-

cency lists data structure is never competitive with the other approaches.

3.1.2 The Counter-Based Approach

An alternative approach to keep track of unsatisfied, satisfied and unit clauses is to

associate literal counters with each clause. These literal counters indicate how many

literals are unsatisfied, satisfied and, indirectly, how many are still unassigned.

A clause is satisfied if the counter of satisfied literals is greater than one; is unsatisfied

if the unsatisfied literal counter equals the number of literals; finally, it is unit if the

unsatisfied literal counter equals the number of literals minus one, and there is still one

unassigned literal. When a clause is declared unit, the list of literals is traversed to identify

which literal needs to be assigned. Algorithm 3.2 has the pseudo-code for these functions.

The counter-based approach is illustrated in Figure 3.2. Whenever a literal is given a

47

Algorithm 3.2: Functions for clauses with counter-based approach

Is Satisfied Clause(ω)

(1) return num satisfied literals(ω) > 0

Is Unsatisfied Clause(ω)

(1) return num unsatisfied literals(ω) == num literals(ω)

Is Unit Clause(ω)

(1) return num satisfied literals(ω) == 0 and

(2) num unsatisfied literals(ω) == num literals(ω) - 1

3

0

0

Literals

Satisfied Lits

Unsatisfied Lits

Literals

Satisfied Lits

Unsatisfied Lits

3

0

1

Literals

Satisfied Lits

Unsatisfied Lits

3

0

2

unit clause

Literals

Satisfied Lits

Unsatisfied Lits

3

satisfied clause

2

1

unassigned unsatisfied satisfied

Figure 3.2: Operation of counter-based data structures

value, either the counters for satisfied or unsatisfied literals are updated, depending on the

literal being assigned value 1 or 0, respectively. Observe that when the clause is identified

as unit, the whole clause is traversed in order to find the remaining unassigned literal.

This was not the case for the assigned literal hiding data structure, where identifying a

clause as unit implies having only one literal on the unassigned literals list. Moreover, in

the counter-based approach the counters have to be updated when the search backtracks.

3.1.3 Counter-Based with Satisfied Clause Hiding

A key drawback of using adjacency lists is that the lists of clauses associated with

each variable can be large, and will grow as new clauses are recorded during the search

process. Hence, each time a variable is assigned, a potentially large list of clauses needs

to be traversed. Different approaches can be envisioned to overcome this drawback. For

the counter-based approach of the previous section, one solution is to remove from the

list of clauses of each variable all the clauses that are known to be satisfied. Hence,

each time a clause ω becomes satisfied, ω is hidden from the list of clauses of all the

48

variables with literals in ω. The technique of hiding satisfied clauses can be traced back

to the work of O. Coudert in Scherzo (Coudert 1996) for the Binate Covering Problem.

The motivation for hiding clauses is to reduce the amount of work required each time

a variable x is assigned, since in this case only the unresolved clauses associated with x

need to be analyzed.

Example 3.1 Let us consider again formula ϕ (from Example 2.1) having three clauses

ω1, ω2 and ω3:

ω1 = (x1 ∨ x2), ω2 = (x2 ∨ ¬x3), ω3 = (x1 ∨ x2 ∨ x3).

Before starting the search, variable x2 is associated with clauses ω1, ω2 and ω3. Let us now

suppose that variable x1 is assigned value 1. Then, clauses ω1 and ω3 become satisfied

and therefore these clauses are hidden from the list of clauses associated with x2, thus

remaining only ω2 in this list.

3.1.4 Satisfied Clause and Assigned Literal Hiding

One final organization of adjacency lists is to utilize exactly the same data structures

as the ones used by Scherzo (Coudert 1996). Not only satisfied clauses get hidden from

clause lists in variables, but also unsatisfied literals get removed from literal lists in clauses.

Example 3.2 Let us consider again formula ϕ from Example 3.1 but now suppose that

variable x1 is assigned value 0. Then literal x1 is hidden from clauses ω1 and ω3. Hence,

we get ω1 = (x2) and ω3 = (x2 ∨ x3).

The utilization of clause and literal hiding techniques aims reducing the amount of

work associated with assigning each variable. As will be shown by the experimental

results in Section 3.6, clause and literal hiding techniques are not particularly efficient

when compared with the simple counter-based approach described above. Moreover, lazy

data structures, described in the next section, are by far more efficient.

49

3.2 Lazy Data Structures

As mentioned in the previous section, adjacency list-based data structures share a

common problem: each variable x keeps references to a potentially large number of clauses,

that often increases as the search proceeds. Clearly, this impacts negatively the amount

of operations associated with assigning x. Moreover, it is often the case that most of x’s

clause references do not need to be analyzed when x is assigned, since most of the clauses

do not become unit or unsatisfied. Observe that lazily declaring a clause to be satisfied

does not affect the correctness of the algorithm.

Considering that only unsatisfiable and unit clauses must be identified, then is enough

to have two references for each clause. (Although additional references may be required

to guarantee clauses’ consistency after backtracking.) These references never reference

literals assigned value 0. Hence, such references are allowed to move along the clause:

whenever a referenced literal is assigned value 0, the reference moves to another literal

either assigned value 1 or assigned value U (i.e. unassigned). Algorithm 3.3 shows how the

value and the position of these two references (refA and refB) are enough for declaring

a clause to be satisfied, unsatisfied or unit. As already mention, a clause is lazily declared

to be satisfied, meaning that some clauses being satisfied are not recognized as so. Again,

this aspect does not affect the correctness of the algorithm.

Algorithm 3.3: Functions for clauses with lazy data structures

Is Satisfied Clause(ω)

(1) return refA(ω) == 1 or refB(ω) == 1

Is Unsatisfied Clause(ω)

(1) return refA(ω) == 0 and

(2) position refA(ω) == position refB(ω)

Is Unit Clause(ω)

(1) return refA(ω) == U and

(2) position refA(ω) == position refB(ω)

In this section we analyze lazy data structures, which are characterized by each variable

keeping a reduced set of clauses’ references, for each of which the variable can be effectively

used for declaring the clause as unit, as satisfied or as unsatisfied. The operation of these

50

data structures is summarized in Figure 3.3. For each data structure, we illustrate literal

assignment, unit clause identification and backtracking.

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

HT htLS

H

H

H

H

H

H

H

H

H

T

T

T

T

T T

T

T

T

THB

HB

HB

HB

HB

TB

TB Backtracking

WL

@1 @2

W

TB

TB

TB

H

@3 @2@1

@1 @2

@2@3

@2@3@1 @4

@4@1

@1 @2

@1 @3@2

@2 @3@4 @1

@4 @1 @3@2

@2@1

@1 @2

@1 @3 @2

@1 @4 @3 @2

@1 @4 @3 @2

@1 @2

@1 @2

@2 @3@1

@1@4 @3@2

@1@4 @3@2

@1 @2

WLS
HS W W TS

WHS W TS

W W

HS W W TS

TSHS

HS W W TS

W W

WW

W

W W

W

W

unassigned unsatisfied satisfied

Unit Clause

Figure 3.3: Operation of lazy data structures

3.2.1 Sato’s Head/Tail Lists

The first lazy data structure proposed for SAT was the Head/Tail (H/T) data structure,

originally used in the Sato SAT solver (Zhang 1997) and later described in (Zhang &

Stickel 2000). As the name implies, this data structure associates two references with

each clause, the head (H) and the tail (T) literal references (see Figure 3.3).

Initially the head reference points to the first literal, and the tail reference points to

the last literal. Each time a literal pointed to by either the head or tail reference is

assigned, a new unassigned literal is searched for. Both points move towards to the center

of the clause. In case an unassigned literal is identified, it becomes the new head (or

tail) reference, and a new reference is created and associated with the literal’s variable.

These references guarantee that H/T positions are correctly recovered when the search

backtracks. In case a satisfied literal is identified, the clause is declared satisfied. In case

no unassigned literal can be identified, and the other reference is reached, then the clause

51

is declared unit, unsatisfied or satisfied, depending on the value of the literal pointed to

by the other reference.

When the search process backtracks, the references that have become associated with

the head and tail references can be discarded, and the previous head and tail references

become activated (represented with a dashed arrow in Figure 3.3 for column HT). Ob-

serve that this requires in the worst-case associating with each clause a number of literal

references in variables that equals the number of literals.

3.2.2 Chaff’s Watched Literals

The more recent Chaff SAT solver (Moskewicz et al. 2001) proposed a new data

structure, the Watched Literals (WL), that solves some of the problems posed by H/T

lists. As with H/T lists, two references are associated with each clause. However, and in

contrast with H/T lists, there is no order relation between the two references, allowing

the references to move in any direction. The lack of order between the two references has

the key advantage that no literal references need to be updated when backtracking takes

place. In contrast, unit or unsatisfied clauses are identified only after traversing all the

clauses’ literals; a clear drawback. The identification of satisfied clauses is similar to H/T

lists.

With respect to Figure 3.3, the most significant difference between H/T lists and

watched literals occurs when the search process backtracks, in which case the references

to the watched literals are not modified. Consequently, and in contrast with H/T lists,

there is no need to keep additional references. This implies that for each clause the number

of literal references that are associated with variables is kept constant.

3.2.3 Head/Tail Lists with Literal Sifting

The problems identified for H/T lists and Watched Literals can be solved with yet

another data structure, H/T lists with literal sifting (htLS). This new data structure

is similar to H/T lists, but it dynamically rearranges the list of literals, ordering the

clause’s assigned literals by increasing decision level. Assigned variables are sorted by non-

52

decreasing decision level, starting from the first or last literal reference, and terminating

at the most recently assigned literal references, just before the head reference and just

after the tail reference. This sorting is achieved by sifting assigned literals as each is

visited by the H and T literal references. The sifting is performed towards one of the ends

of the literal list.

The solution based on literal sifting has several advantages:

• When a clause either becomes unit or unsatisfied, there is no need to traverse all the

clause’s literals to confirm this fact. Moreover, satisfied clauses are identified in the

same way as for the other lazy data structures.

• As illustrated in Figure 3.3, only four literal references need to be associated with

each clause. Besides the Head (H) and Tail (T) references, we also need the Head

Back (HB) and Tail Back (TB) references. HB and TB references are kept precisely

before the H and T references, respectively. Having four literal references contrasts

with H/T lists, that in the worst-case need a number of references that equals the

number of literals (even though watched literals just require two references).

• Literals that are assigned at low decision levels are visited only once, and then sifted

out of the literal range identified by the H/T references, until the search backtracks to

those low decision levels. Hence, literal references never cross over assigned literals,

neither when the search is moving forward nor when the search is backtracking.

3.2.4 Watched Literals with Literal Sifting

One additional data structure consists of utilizing watched literals with literal sifting

(WLS). This data structure applies literal sifting, but the references to unassigned literals

are watched, in the sense that when backtracking takes place the literal references are not

updated (see Figure 3.3). This data structure keeps two watched literals, and uses two

additional references (HS and TS, meaning Head Sifting and Tail Sifting, respectively)

for applying literal sifting and keeping assigned literals by decreasing order of decision

level. Watched literals are managed as described earlier, and literal sifting is applied as

53

Table 3.1: Comparison of the data structures

data structures AL HT htLS WLS WL

lazy data structure? N Y Y Y Y

literal references
min L 2C 4C 4C 2C

max L L 4C 4C 2C

visited literals

when identifying

unit/unsat cls
min 1 1 1 1 W-1

max 1 W-1 W-1 W-1 W-1

when backtracking Lb Lb Lb 0 0

L = number of literals

C = number of clauses

W = number of literals in clause

Lb = number of literals to be unassigned when backtracking

proposed in the previous section.

Similarly to watched literals, the main advantage of the WLS data structure is the

simplified backtracking process, whereas the main disadvantage is the requirement to

visit all literals between the literal references HS and TS each time the clause is either

unit or unsatisfied. Observe that it is easy to reduce the number of literal references to

three: two for the watched literals and one for keeping the sifted literals. However, the

overhead of literal sifting then becomes more significant.

3.3 A Comparison of the Data Structures

Besides describing the organization of each data structure, it is also interesting to

characterize each one in terms of the memory requirements and computational effort. In

Table 3.1, we provide a comparison of the data structures described above, where AL, HT,

htLS, WLS and WL stand for Adjacency Lists with assigned literal hiding, Head/Tail lists,

Head/Tail lists with Literal Sifting, Watched Literals with Literal Sifting and Watched

Literals, respectively.

The table indicates which data structures are lazy, the minimum and maximum total

number of literal references associated with all clauses, and also a broad indication of

the work associated with keeping clause state when the search either moves forward (i.e.

54

implies assignments) or backward (i.e. backtracks).

Even though it is straightforward to prove the results shown, a careful analysis of the

behavior of each data structure is enough to establishing these results. For example, when

backtracking takes place, the WL data structure updates no literal references. Hence, the

number of visited literal references for each conflict is 0.

All different data structures clearly exhibit advantages and disadvantages. With the

experimental results given in section 3.6 we will try to identify which characteristics are

the most important when building an efficient SAT solver.

3.4 Handling Special Cases: Binary/Ternary Clauses

As one final optimization to literal sifting, we propose the special handling of the clauses

that are more common in problem instances: binary and ternary clauses. Both binary

and ternary clauses can be identified as unit, satisfied or unsatisfied in constant time,

thus eliminating the need for moving literal references around. Since the vast majority of

the initial number of clauses for most real-world problem instances are either binary or

ternary, the average CPU time required to handle each clause may be noticeably reduced.

In this situation, the other data structures described in this chapter are solely applied to

original large clauses and to clauses recorded during the search process, which are known

for having a huge number of literals.

3.5 Do Lazy Data Structures Suffice?

As mentioned earlier, most state-of-the-art SAT solvers currently utilize lazy data

structures. Even though these data structures suffice for backtrack search SAT

solvers that solely utilize Boolean Constraint Propagation, the laziness of these data

structures may pose some problems, in particular for algorithms that aim the inte-

gration of more advanced techniques for the identification of necessary assignments,

namely restricted resolution, two-variable equivalence, and pattern-based clause inference,

among other techniques (Groote & Warners 2000; Marques-Silva 2000; Brafman 2001;

55

Bacchus 2002b). For these techniques, it is essential to know which clauses are binary

and/or ternary. As already mentioned, lazy data structures are not capable of keeping

precise information about the set of binary and/or ternary clauses. Clearly, this can be

done by associating additional literal references with each clause, and as a result by intro-

ducing additional overhead. Actually, the use of additional references has been referred

in (Gelder 2002).

Consequently, if future SAT solvers choose to integrate advanced techniques for the

identification of necessary assignments, they either forgo using lazy data structures, or

they apply those techniques to a subset of the total number of binary/ternary clauses.

One reasonable assumption is that lazy data structures will indeed be deemed essential,

and that future SAT solvers will apply advanced techniques to a lazy set of binary/ternary

clauses. In this situation, it becomes important to characterize the laziness of a lazy data

structure in terms of the actual percentage of binary/ternary clauses it is capable of iden-

tifying. A data structure that is able to identify the largest percentage of binary/ternary

clauses is clearly the best option for the implementation of advanced search techniques.

3.6 Experimental Results

This section evaluates the different SAT data structures described in the previous

sections. Afterwards, we also evaluate the accuracy of lazy SAT data structures in esti-

mating the number of satisfied, binary and ternary clauses. Again, we used the JQuest

SAT framework, a Java implementation that was built to conduct unbiased experimental

evaluations of SAT algorithms and techniques. Using JQuest in these experiments, we

guarantee that for a given problem instance and for each data structure the same algorith-

mic organization and the same search tree are obtained. In other words, JQuest ensures

that the number of decisions required for solving a problem instance is exactly the same

regardless of the implemented data structures.

Even though Java yields a necessarily slower implementation, it is also plain that it

allows fast prototyping of new algorithms. Moreover, well-devised Java implementations

56

Table 3.2: Example instances

Application Domain Selected Instance # Variables #Clauses Satisfiable?

Graph Colouring

flat175-81 525 1951 Y
flat200-82 600 2237 Y
sw100-13 500 3100 Y
sw100-79 500 3100 Y

All-Interval Series ais10 181 3151 Y

Bounded Model Checking
barrel5 1407 5383 N
longmult6 2848 8853 N
queueinvar18 2081 17368 N

Equivalence Checking c5315 bug 5396 15004 Y

Pigeon Hole(Dimacs) hole9 90 415 N

Inductive Inference(Dimacs) ii32e5 522 11636 Y

Parity Learning(Dimacs) par16-4-c 324 1292 Y

Blocks World 4blocksb 410 24758 Y

Bounded Model Checking(IBM) bmc-ibm-3 14930 72106 Y

Logistics facts7hh.13 4315 90646 Y

Planning
sat-bw large.c 3016 50457 Y
unsat-bw large.c 2729 45368 N

Superscalar Processor
Verification

dlx2 aa 490 2804 N
dlx2 cc a bug07 1515 12808 Y
dlx2 cc a bug17 4847 39184 Y
dlx2 cc a bug59 4731 37950 Y
2dlx cc mc ex bp f2 bug004 4824 48233 Y
2dlx cc mc ex bp f2 bug006 4824 48215 Y

Circuit Testing (Dimacs)
bf0432-079 1044 3685 N
ssa2670-141 4843 2315 N

can be used as the blueprint for faster C/C++ implementations. In the case of JQuest, all

the proven strategies and techniques for SAT have been implemented: clause recording,

non-chronological backtracking, search restarts and variable selection heuristics.

For the results shown below a P-III@833 MHz Linux Red Hat 6.1 machine with 1 GByte

of physical memory was used. The Java Virtual Machine used was SUN’s HotSpot JVM for

JDK1.3. Moreover, results are given for representative instances that were selected from

several classes of instances available from SATLIB web site http://www.satlib.org/.

Table 3.2 characterizes each of the selected instances, namely giving the application do-

main, the number of variables and clauses and the information about whether the instance

is satisfiable.

57

Table 3.3: Results for the time per decision (tpd, in msec)

Time ratio wrt minimum tpd
Instance #decs tpd ALl ALcb ALcbsr ALlsr HT WL htLS htLS23 wLS wLS23

flat175-81 1001 3.33 1.99 1.10 2.06 1.88 1.11 1.02 1.09 1.00 1.22 1.01
flat200-82 29308 2.13 7.28 3.17 1.78 1.60 1.68 1.23 1.06 1.00 1.26 1.13
sw100-13 1816 0.61 1.69 1.00 1.84 1.59 1.18 1.03 1.20 1.15 1.28 1.15
sw100-79 1421 0.77 1.71 1.00 2.16 1.90 1.21 1.21 1.23 1.22 1.40 1.18
ais10 6380 3.91 8.39 3.39 1.47 1.27 1.88 1.39 1.00 1.02 1.21 1.13
barrel5 5940 8.12 3.16 1.62 1.85 1.75 1.35 1.06 1.06 1.02 1.14 1.00

longmult6 4807 11.53 6.80 3.03 1.60 1.51 1.36 1.13 1.09 1.00 1.23 1.08
queueinvar18 8680 3.17 4.46 2.10 1.46 1.31 1.27 1.23 1.06 1.00 1.15 1.03
c5315 bug 28621 1.51 1.58 1.07 1.81 1.77 1.17 1.04 1.16 1.03 1.21 1.00

hole9 6072 5.16 7.51 3.00 2.06 1.62 1.45 1.04 1.03 1.03 1.04 1.00

ii32e5 1466 1.95 2.72 1.30 3.25 3.67 1.05 1.09 1.33 1.28 1.21 1.00

par16-4-c 6167 5.30 7.90 3.44 1.33 1.21 1.80 1.22 1.08 1.00 1.20 1.03
4blocksb 6803 15.37 6.34 2.51 2.13 1.73 1.24 1.29 1.00 1.17 1.14 1.16
bmc-ibm-3 2559 16.15 1.84 1.09 2.25 2.13 1.21 1.05 1.18 1.07 1.21 1.00

facts7hh.13 2241 6.70 2.71 1.36 3.02 2.71 1.42 1.46 1.14 1.03 1.36 1.00

sat-bw large.c 10020 37.97 5.24 2.39 2.55 2.38 1.41 1.25 1.10 1.00 1.26 1.01
unsat-bw large.c 3280 24.09 3.03 1.50 2.62 2.46 1.39 1.31 1.13 1.02 1.30 1.00

dlx2 aa 10292 1.02 5.04 2.22 1.97 1.66 1.55 1.00 1.04 1.02 1.09 1.01
dlx2 cc bug07 10314 2.54 4.57 2.00 1.98 1.72 1.25 1.03 1.15 1.00 1.17 1.05
dlx2 cc bug17 7681 2.74 2.55 1.31 1.93 1.73 1.30 1.13 1.09 1.03 1.13 1.00

dlx2 cc bug59 2588 1.87 2.27 1.20 2.03 1.89 1.22 1.13 1.12 1.07 1.18 1.00

2dlx cc mc...bug004 18481 1.23 2.51 1.30 2.00 1.77 1.27 1.14 1.09 1.03 1.13 1.00

2dlx cc mc...bug006 29173 1.91 3.33 1.61 2.05 1.77 1.36 1.13 1.09 1.02 1.12 1.00

bf0432-079 1038 2.23 1.67 1.04 2.01 1.86 1.16 1.00 1.13 1.05 1.18 1.03
ssa2670-141 674 1.31 1.28 1.00 1.70 1.57 1.22 1.06 1.22 1.17 1.27 1.12

3.6.1 Lazy vs Non-Lazy Data Structures

In order to compare the different data structures, the following algorithm organization

of JQuest is used:

• The VSIDS (Moskewicz et al. 2001) (Variable State Independent Decaying Sum)

heuristic is used for all data structures. Our implementation of the VSIDS heuristic

closely follows the one proposed in Chaff.

• Identification of necessary assignments solely uses Boolean constraint propagation.

We should note that, in order to guarantee that the same search tree is visited, the

unit clauses are handled in a fixed predefined order.

• Conflict analysis is implemented as in GRASP (Marques-Silva & Sakallah 1996).

However, only a single clause is recorded (by stopping at the first Unique Implication

Point (UIP) as suggested by the authors of Chaff (Moskewicz et al. 2001)). Moreover,

no clauses are ever deleted.

• Search restarts are not applied.

58

The results of comparing the different data structures are shown in Table 3.3. Observe

that in all cases the problem instances chosen are solved with several thousand decisions,

usually taking a few tens of seconds. Hence, the instances chosen are significantly hard,

but can be solved without sophisticated search strategies. Clearly, using sophisticated

search strategies would make even more difficult guaranteeing the same search tree for all

data structures considered.

Table 3.3 gives results for all the data structures described above:

ALl adjacency lists with assigned literal hiding

ALcb counter-based adjacency lists

ALcbsr adjacency lists with satisfied clause removal/hiding

ALlsr adjacency lists with assigned literal and satisfied clause removal/hiding

HT H/T lists

WL watched literals

htLS H/T lists with literal sifting

htLS23
H/T lists with literal sifting and special handling of binary and

ternary clauses

wLS watched literals lists with literal sifting

wLS23
watched literals lists with literal sifting and special handling of binary

and ternary clauses

The table of results includes the (constant) number of decisions required to solve each

problem instance, and the minimum time-per-decision (tpd) over all data structures (in

milliseconds, msec). The results for all problem instances are shown as a ratio with respect

to the minimum time-per-decision for each problem instance. For example, instance bmc-

ibm-3 when solved with wLS23 data structure requires 16.15 msec per decision (total CPU

time is given by 2559 x 16.15 msec = 41.33 sec), and when solved with HT data structure

requires 1.21 x 16.15 msec = 19.54 msec per decision (total CPU time is given by 2559 x

19.54 msec = 50 sec).

From the table of results, several conclusions can be drawn. Clearly, lazy data struc-

tures are (in most cases) significantly more efficient than data structures based on ad-

59

jacency lists. Regarding the data structures based on adjacency lists, the utilization of

satisfied clause and assigned literal hiding does not pay off. For the lazy data structures,

H/T lists are in general significantly slower than either watched literals or H/T lists with

literal sifting. Finally, H/T and WL lists with literal sifting and special handling of binary

and ternary clauses tend to be somewhat more efficient than watched literals. This results

in part from the literal sifting technique, that allows literals assigned at low decision levels

not to be repeatedly analyzed during the search process. In addition, special handling of

small clauses may also impact the search time.

Despite the previous results that indicate H/T and WL lists with literal sifting and with

special handling of binary and ternary clauses to be in general faster than the watched

literals data structure, one may expect the small performance difference between the two

data structures to be eliminated by careful C/C++ implementations. This is justified by

the expected better cache behavior of watched literals (Moskewicz et al. 2001).

3.6.2 Limitations of Lazy Data Structures

As mentioned in Section 3.2, lazy data structures do not maintain all the information

that may be required for implementing advanced SAT techniques, namely two-variable

equivalence conditions (from pairs of binary clauses), restricted resolution (between binary

and ternary clauses), and pattern-based clause inference conditions (also using binary and

ternary clauses). Even though some of these techniques are often used as a preprocessing

step by SAT solvers, their application during the search phase has been proposed in

the past (Groote & Warners 2000; Marques-Silva 2000; Bacchus 2002b). The objective

of this section is thus to measure the laziness of lazy data structures during the search

process. The more lazy a (lazy) data structure is, the less suitable it is for implementing

(lazy) advanced reasoning techniques during the search process. As we show below, no

lazy data structure provides completely accurate information regarding the number of

binary, ternary or satisfied clauses. However, some lazy data structures are significantly

more accurate than others. Hence, if some form of lazy implementation of advanced

SAT techniques is to be used during the search process, some lazy data structures are

60

Table 3.4: Results for the accuracy of recorded clause identification

satisfied clauses binary clauses ternary clauses
Instance AL HT WL wLS htLS AL wLS HT htLS AL wLS HT htLS

flat175-81 291874 73% 80% 62% 89% 9978 10% 19% 93% 11166 3% 37% 86%
flat200-82 148284026 96% 98% 85% 99% 438356 20% 29% 85% 613244 9% 14% 75%
sw100-13 424018 95% 96% 91% 98% 7185 36% 13% 91% 8616 2% 0% 85%
sw100-79 259450 95% 96% 94% 98% 3062 26% 10% 79% 4780 5% 2% 73%
ais10 18519748 98% 98% 83% 99% 43337 31% 20% 75% 74899 10% 9% 68%
barrel5 9005238 90% 95% 73% 99% 251321 1% 78% 98% 168820 1% 50% 92%
longmult6 9892419 88% 93% 70% 95% 109446 8% 75% 96% 45805 9% 8% 77%
queueinvar18 11318602 96% 97% 90% 98% 3927 8% 51% 90% 11486 1% 8% 74%
c5315 bug 24701766 90% 92% 86% 96% 628304 3% 65% 96% 539811 1% 50% 90%
hole9 14775953 84% 93% 53% 98% 22258 10% 17% 72% 62987 4% 1% 64%
ii32e5 128713 99% 99% 99% 100% 1413 4% 14% 70% 1256 0% 4% 50%
par16-4-c 18326757 97% 99% 66% 100% 9454 19% 38% 95% 12131 7% 37% 90%
4blocksb 15442183 92% 93% 81% 96% 191817 12% 48% 89% 196534 7% 16% 72%
bmc-ibm-3 778745 82% 88% 73% 94% 136082 2% 89% 98% 31120 3% 18% 89%
facts7hh.13 493070 89% 94% 86% 96% 16055 8% 62% 90% 14160 3% 52% 84%
bw large.c 32784773 89% 93% 65% 97% 275761 12% 36% 86% 284054 6% 24% 71%
bw large.c 2713365 87% 90% 70% 96% 48475 14% 34% 91% 46996 7% 23% 82%
dlx2 aa 14905254 83% 89% 52% 93% 105184 20% 10% 89% 116638 5% 15% 58%
dlx2 cc bug07 16664430 66% 85% 78% 91% 157500 16% 14% 86% 131612 6% 6% 66%
dlx2 cc bug17 6359386 95% 96% 86% 98% 44562 13% 10% 87% 49437 8% 2% 75%
dlx2 cc bug59 586538 94% 93% 90% 95% 6450 13% 3% 74% 13002 5% 1% 55%
2dlx cc mc...bug004 8587704 90% 93% 86% 97% 147713 11% 10% 92% 137653 7% 15% 84%
2dlx cc mc...bug006 35417574 88% 93% 72% 97% 318105 12% 13% 93% 271931 6% 12% 81%
bf0432-079 200114 89% 92% 79% 98% 7423 4% 23% 90% 6702 2% 26% 91%
ssa2670-141 57588 93% 92% 87% 96% 1595 11% 13% 88% 1646 3% 4% 90%

significantly more adequate than others.

We start by observing that the watched literals data structure is unable to dynamically

identify binary and ternary clauses, since there is no order relation between the two refer-

ences used. Identifying binary and ternary clauses would involve maintaining additional

information w.r.t. what is required by the watched literals data structure. Observe that

the utilization of two references only guarantees the identification of unit clauses. The

lack of order among the two references prevents the identification of binary and ternary

clauses. In order to identify all or some of the binary/ternary clauses, either the two

references respect some order relation, or more references need to be used.

Table 3.4 includes results measuring the accuracy of each lazy data structure in iden-

tifying satisfied, binary and ternary clauses among recorded clauses. The reference values

considered are given by the values obtained with adjacency lists data structures, which

are the actual exact values. Observe that, as mentioned above, the watched literals data

structure can only be used for identifying satisfied clauses. From the results shown, we can

conclude that H/T lists with literal sifting provide by far the most accurate estimates of

the number of satisfied, binary and ternary clauses, when compared with other lazy data

61

structures. In addition, for satisfied and binary clauses, the measured accuracy is often

close to the maximum possible value, whereas for ternary clauses the accuracy values tend

to be somewhat lower.

3.7 Recent Advances

The Chaff SAT solver has definitely introduced a new paradigm shift in the history of

SAT solvers. Currently, it is generally accepted that a competitive SAT solver must have

a very fast implementation. Inspired in Chaff, Jerusat (Nadel 2002) and siege (Ryan 2004)

SAT solvers have made significant efforts to build competitive data structures, introducing

even more efficient implementations.

Jerusat introduces a new data structure named WLCC (Watched List with Conflicts

Counter). This data structure combines the advantages of watched literals with the

advantages of literal sifting. The watched literals data structure guarantees having only

two references per clause, as well as no need to visit a clause during unassignment. By

using data structures with literal sifting, there is a reduction on the number of literals

visited during assignment. In addition, the WLCC data structure enables reducing the

number of visits to satisfied clauses and allows visiting fewer literals in recorded clauses,

by keeping a counter for each assigned variable with the number of conflicts by the time

the variable was assigned. This information is used to find out which literals in the clause

have been sifted.

The siege SAT solver includes a careful handling of binary clauses. Observe that most

available instances have a significant number of binary clauses, which means that an im-

provement in the implementation of the data structures for binary clauses has a significant

impact on the overall performance. The main idea is that having two watched literals

does not pay off for binary clauses because all literals have to be watched. Obviously, the

effort for finding a non-watched literal is completely unnecessary. The alternative is to

maintain a specialized representation for binary clauses, where each literal is associated

with a list of literals. For each literal, such list contains the literals that share binary

62

clauses with it. Whenever a literal becomes false, all literals in the corresponding list

are implied. Siege’s author also suggests a specialized data structure for ternary clauses.

Moreover, larger clauses processing is improved by using boundary sentinels, which re-

duces the computational effort of the search loops when trying to find an unassigned

non-watched literal.

3.8 Summary

This chapter surveys existing data structures for backtrack search SAT algorithms and

proposes new data structures.

Existing data structures can be divided in two different categories: the traditional

adjacency lists data structures and the most recent lazy data structures. For each clause,

the adjacency lists data structures allow to know exactly the number of literals assigned

value 1, assigned value 0 or unassigned, and therefore whether a clause is satisfied, unsat-

isfied or unit. On the other hand, the lazy data structures only allow to know whether a

clause is unit or unsatisfied. Clearly, being able to determine whether a clause is unit or

unsatisfied suffices to guarantee that unit propagation and conflict detection are applied.

The lazy data structures are by far the most competitive when using backtrack search

algorithms with clause recording. For the watched literals data structure, which is the

most competitive, the main drawback is in the number of operations required to confirm

that a clause is unit. Hence, we propose new data structures that are based on literal

sifting and therefore do not require so many operations to confirm that a clause is unit.

Moreover, we suggest using dedicated data structures for binary and ternary clauses,

based on the traditional data structures. Lazy data structures are particularly useful for

representing large (recorded) clauses.

The experimental results compare all the different data structures, being a first step

on evaluating how advanced SAT techniques perform with lazy data structures. The

obtained results indicate that the new data structures, based on literal sifting, may be

preferable for the next generation SAT solvers. This conclusion results from these new

63

data structures being in general faster, but mostly due to coping better with the laziness of

recent (lazy) data structures. Clearly, this depends on the accuracy of each data structure

to identify binary and ternary clauses. As a result, data structures that are unable to

gather the information required by advanced SAT techniques may be inadequate for the

next generation state-of-the-art SAT solvers.

64

4

Probing-Based Preprocessing
Techniques

Preprocessing techniques are often used for simplifying hard instances of proposi-

tional satisfiability. Indeed, in the last years there have been significant contributions

in terms of applying different formula manipulation techniques during preprocessing.

These techniques can in some cases yield competitive approaches (Gelder & Tsuji 1993;

Groote & Warners 2000; Li 2000; Berre 2001; Brafman 2001; Bacchus 2002a; Novikov

2003).

Preprocessing can be used for reducing the number of variables and for drastically

modifying the set of clauses, either by eliminating irrelevant clauses or by inferring new

clauses. It is generally accepted that the ability to reduce either the number of variables

or clauses in instances of SAT impacts the expected computational effort of solving a given

instance. This ability can actually be essential for specific and hard classes of instances.

Interestingly, the ability to infer new clauses may also impact the expected computational

effort of SAT solvers (Lynce & Marques-Silva 2001). Observe that these new clauses can

be useful for reducing the number of variables (and consequently the number of clauses).

This chapter proposes the utilization of probing-based techniques for manipulating

propositional satisfiability formulas. Probing allows the formulation of hypothetical sce-

narios, obtained by assigning a value to a variable, and then applying unit propagation.

Furthermore, probing-based techniques can build upon a very simple idea: a table of trig-

65

gering assignments, which registers the result of applying probing to every variable in the

propositional formula.

The new probing-based approach provides a generic framework for applying different

SAT preprocessing techniques by establishing reasoning conditions on the entries of the

table of assignments. Reasoning conditions allow to implement most existing formula

manipulation techniques, as well as new formula manipulating techniques. Interestingly,

and to our best knowledge, this new framework represents the first approach to jointly

apply variable and clause probing.

This chapter is organized as follows. The next section gives the preliminaries, followed

by motivating examples using a table of assignments, which records the probing results.

Afterwards, we establish reasoning conditions for identifying necessary assignments and

inferring new clauses. In Section 4.4, we present ProbIt: a probing-based preprocessor

for propositional satisfiability. Next, experimental results are presented and analyzed.

Finally, Section 4.6 overviews related work and relates existing formula manipulation

techniques with the proposed reasoning conditions.

4.1 Preliminaries

In what follows we analyze conditions relating sets of assignments. Given an assign-

ment α 1 and a formula ϕ, the set of assignments resulting of applying Boolean Con-

straint Propagation (the iterative appliance of unit propagation) to ϕ given α is denoted

by BCP(ϕ, α). Obviously, ϕ is updated with such new assignments. When clear from the

context, we use the notation BCP(α), and the existence of the CNF formula ϕ is implicit.

Without assignment, BCP(ϕ) denotes plain unit propagation to formula ϕ, given the ex-

istence of unit clauses. Assignment α is referred to as the triggering assignment of the

assignments in BCP(α). We may also use the notation BCP(A) to denote the result of

applying unit propagation as the result of all assignments in the set of assignments A.

Reasoning conditions are analyzed based on a tabular representation of triggering as-

1An assignment α is a pair 〈l, v〉 that denotes assigning value v to literal l.

66

Algorithm 4.1: Reasoning conditions under Boolean constraint propagation

Apply Reasoning Conditions(ϕ, τ)

(1) if apply BCP(ϕ) yields a conflict

(2) return UNSATISFIABLE

(3) foreach variable xi such that xi is unassigned

(4) assignments = apply BCP(ϕ,〈xi, 0〉)

(5) store assignments in table of assignments τ

(6) undo assignments

(7) assignments = apply BCP(ϕ, 〈xi, 1〉)

(8) store assignments in table of assignments τ

(9) undo assignments

(10) Use table of assignments τ to apply Reasoning Conditions

(11) return ϕ

signments, i.e. a table of assignments, where each row represents a triggering assignment,

and each column represents a possible implied assignment. In practice the table of as-

signments is represented as a sparse matrix and so the memory requirements are never

significant. In this table, each 1-valued entry (αt, αi) denotes an implied assignment αi

given a triggering assignment αt. Hence the 1-valued entries of a given row αt denote the

elements of set BCP(αt).

The reasoning conditions can be organized in an algorithm that can be used as a pre-

processor algorithm. We refer to this algorithm as reasoning conditions under Boolean

constraint propagation. Algorithm 4.1 gives the pseudo-code for the preprocessing algo-

rithm. For this algorithm, it is implicit that if BCP yields a conflict for a triggering

assignment 〈xt, vt〉, then the assignment 〈xt,¬vt〉 is implied (this procedure corresponds

to the well-known failed-literal rule (Crawford & Auton 1993)).

4.2 Motivating Examples

This section analyzes a few examples, that motivate the techniques upon which our

framework is based, and which allow the identification of necessary assignments and the

inference of new clauses.

Example 4.1 Consider a CNF formula ϕ defined on a set of variables X = {a, b, c, d, e}

and having the following clauses:

67

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.1: Table of assignments

ω1 = (a ∨ b) ω5 = (¬a ∨ ¬c ∨ d)

ω2 = (a ∨ ¬b ∨ d) ω6 = (¬a ∨ ¬d ∨ e)

ω3 = (a ∨ ¬c ∨ e) ω7 = (c ∨ e)

ω4 = (¬a ∨ c)

This formula has the table of assignments shown in Figure 4.1. Each line in the table

corresponds to the result of applying BCP, given a triggering assignment. For example,

given the assignment a=0 (also denoted by 〈a, 0〉), we can conclude from the table that

BCP(〈a, 0〉) = {〈a, 0〉, 〈b, 1〉, 〈d, 1〉}.

4.2.1 Necessary Assignments

The identification of necessary assignments plays a key role in SAT algorithms, where

it can be viewed as a form of reduction of the domain of each variable. In SAT algorithms,

the most commonly used procedure for identifying necessary assignments is BCP, which

identifies necessary assignments due to the unit clause rule in linear time on the number

of literals in the CNF formula. However, BCP does not identify all necessary assignments

68

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.2: BCP(〈a, 0〉) ∩ BCP(〈a, 1〉) = 〈d, 1〉

given a set of variable assignments and a CNF formula. Consider for example a formula

having two clauses (x1∨¬x2) and (x1∨x2). For any assignment to variable x2, variable x1

must be assigned value 1 for preventing a conflict. This conclusion could be easily reached

by inferring the unit clause (x1) as a result of applying resolution between the two clauses.

Nevertheless, BCP applied to this CNF formula would not produce this straightforward

conclusion.

Let us now consider Figure 4.1, in order to identify necessary assignments that BCP

is not able to identify. We will start by checking necessary assignments conditions for

formula satisfiability.

Example 4.2 From Figure 4.1, observe that for the two possible assignments to variable

a, we always obtain the implied assignment 〈d, 1〉. Since variable a must assume one of the

two possible assignments, then the assignment 〈d, 1〉 is deemed necessary. This conclusion

is represented as BCP(〈a, 0〉) ∩ BCP(〈a, 1〉) = 〈d, 1〉. This condition is named variable

probing. Figure 4.2 illustrates this result.

Example 4.3 The same conclusion from Example 4.2 could be achieved by considering

clause ω2 = (a ∨ ¬b ∨ d). Any assignment that satisfies the formula must also satisfy

this clause, and so at least one of the variable assignments that satisfies the clause must

69

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.3: BCP(〈a, 1〉) ∩ BCP(〈b, 0〉) ∩ BCP(〈d, 1〉) = 〈d, 1〉

hold. Given that in this example the three assignments that satisfy the clause also imply

the assignment 〈d, 1〉, then this assignment is part of any assignment that satisfies the

CNF formula, and so it is a necessary assignment. This conclusion is represented as

BCP(〈a, 1〉)∩BCP(〈b, 0〉)∩BCP(〈d, 1〉) = 〈d, 1〉. This condition is named clause probing.

Figure 4.3 illustrates this result.

The two previous examples concern necessary assignments conditions for formula sat-

isfiability, based on variable and clause probing. Next we address necessary assignments

conditions for preventing formula unsatisfiability.

Example 4.4 Let us now consider Figure 4.4. First of all, note that the triggering as-

signment 〈e, 0〉 implies both 〈d, 0〉 and 〈d, 1〉, and hence a conflict is necessarily declared.

As a result, the assignment 〈e, 1〉 is deemed necessary. This condition corresponds to the

failed-literal rule.

Example 4.5 Let us know consider an alternative approach for assignment 〈e, 1〉 based

on clauses, instead of variables. Another explanation for the same assignment comes from

considering clause ω6 = (¬a∨¬d∨e). The assignment 〈e, 0〉 makes this clause unsatisfied.

Hence, a conflict is declared, and the assignment 〈e, 1〉 is deemed necessary. This result

is illustrated in Figure 4.5.

70

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.4: 〈e, 0〉 implies both 〈d, 0〉 and 〈d, 1〉

4.2.2 Inferred Clauses

Besides the identification of necessary assignments, the table of assignments can also

be used for inferring new clauses. These new clauses not only constrain even more the

given formula but also potentially remove variables in the formula, either by inferring unit

clauses or allowing to identify equivalent literals.

Example 4.6 Let us consider the triggering assignment 〈a, 1〉 and the respective implied

assignment 〈e, 1〉 (see Figure 4.6). Formally, a → e. Hence, the clause (¬a ∨ e) can be

inferred.

Clearly, for each entry in the table of assignments a new binary clause can be created.

However, such procedure would allow to infer a huge number of clauses. In practice, our

goal is to be selective about which entries to utilize for inferring new clauses.

Example 4.7 Observe in Figure 4.7 that the triggering assignments 〈a, 0〉 and 〈a, 1〉 im-

ply the assignments 〈b, 1〉 and 〈c, 1〉, respectively (besides other triggering assignments).

Since a must be subject to one of the two possible assignments, then one of the assignments

in {〈b, 1〉, 〈c, 1〉} must also hold, and so the clause (b ∨ c) can be inferred.

71

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.5: 〈e, 0〉 makes clause ω6 = (¬a ∨ ¬d ∨ e) unsatisfied

Example 4.8 Consider clause ω4 = (¬a ∨ c). Each assignment that satisfies clause ω4

either implies the set of assignments {〈a, 0〉, 〈b, 1〉, 〈d, 1〉} or {〈c, 1〉} (see Figure 4.8).

Hence, because at least one of the assignments that satisfies ω4 must hold, the clauses

(b ∨ c) and (d ∨ c) can be inferred. (Clause (b ∨ c) could also be inferred, although this

clause already exists in the formula.)

The previous examples illustrate how to infer clauses from formula satisfiability re-

quirements. Next, we illustrate the inference of clauses from necessary conditions for

preventing formula unsatisfiability.

Example 4.9 First, observe in Figure 4.9 that the assignments in {〈a, 1〉, 〈d, 0〉} imply

the assignments in {〈a, 1〉, 〈c, 1〉, 〈d, 0〉, 〈d, 1〉, 〈e, 1〉}, that denote an inconsistent assign-

ment due to variable d. Hence, the assignments {〈a, 1〉, 〈d, 0〉} must not hold simultane-

ously, and so the clause (¬a ∨ d) can be inferred.

Example 4.10 Alternatively, observe that the set of assignments {〈a, 1〉, 〈d, 0〉} unsatisfy

clause ω5 = (¬a ∨ ¬c ∨ d) (see Figure 4.10). As a result, the assignments {〈a, 1〉, 〈d, 0〉}

must not hold simultaneously, and so the clause (¬a ∨ d) can be inferred.

72

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.6: Inferring clause (¬a ∨ e)

4.3 Reasoning with Probing-Based Conditions

The examples of the previous section illustrate the forms of reasoning that can be

performed given information regarding the assignments implied by each triggering as-

signment. These forms of reasoning include identification of necessary assignments and

inference of new clauses, both depending on formula satisfiability and formula unsatisfia-

bility conditions.

In this section we formalize different conditions for identifying necessary assignments

and for inferring new clauses. All proposed reasoning conditions result from analyzing the

consequences of assignments made to variables and of propagating those assignments with

BCP. Moreover, all the established reasoning conditions can be explained as a sequence

of resolution steps. Nevertheless, we will give more intuitive explanations whenever they

are clear enough to justify a reasoning condition.

4.3.1 Satisfiability-Based Necessary Assignments

The purpose of this section is to describe the identification of necessary assignments

based on formula satisfiability conditions. The first condition identifies common implied

assignments given the two possible triggering assignments that can be assigned to a vari-

73

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.7: Inferring clause (b ∨ c) (II)

able. This technique is often called variable probing and is illustrated in Example 4.2.

Proposition 4.3.1 Given a CNF formula ϕ, for any variable x of the formula, the as-

signments defined by BCP(〈x, 0〉) ∩ BCP(〈x, 1〉) are necessary assignments.

Proof. Any complete set of assignments to the variables that satisfies the CNF formula

must assign either value 0 or 1 to each variable x. If for both assignments to x, some other

variable y is implied to the same value v, then the assignment 〈y, v〉 is deemed necessary.

The second condition identifies common implied assignments given required conditions

for satisfying each clause. This technique is often called clause probing and is illustrated

in Example 4.3.

Proposition 4.3.2 Given a CNF formula ϕ, for any clause ω of the formula, the assign-

ments defined by
⋂

l∈ω BCP(〈l, 1〉) are necessary assignments.

Proof. Any complete set of assignments that satisfies the CNF formula must satisfy

all clauses. Hence, assignments that are common to all assignments that satisfy a given

clause must be deemed necessary assignments.

74

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.8: Inferring clause (b ∨ c) (I)

Interestingly, Proposition 4.3.1 can be seen as a special case of Proposition 4.3.2 if we

consider that any formula contains all binary tautological clauses (e.g. (a ∨ ¬a)).

4.3.2 Unsatisfiability-Based Necessary Assignments

We now proceed describing the identification of necessary assignments based on formula

unsatisfiability conditions.

Proposition 4.3.3 Given a CNF formula ϕ, if BCP(〈x, v〉) yields a conflict, then the

assignment 〈x,¬v〉 is deemed necessary.

Proof. Any complete set of assignments to the variables that satisfies the CNF formula

must assign either value 0 or 1 to each variable x. Hence, if one of the assignments yields

a conflict, then the other assignment is deemed necessary.

The previous proposition includes the conditions regarding both the identification of

inconsistent assignments to a variable and the identification of unsatisfied clauses. Observe

that most BCP algorithms do not distinguish between these two situations, being a conflict

declared in both cases.

This condition corresponds to the failed-literal rule and is illustrated in both Exam-

ples 4.4 and 4.4. The first corresponds to the identification of inconsistent assignments to

75

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.9: Inferring clause (¬a ∨ d) (II)

a variable and the latter corresponds to the identification of unsatisfied clauses.

4.3.3 Implication-Based Inferred Clauses

As illustrated earlier, probing can also be used for inferring new clauses. One simple

approach for inferring new clauses is to use each entry in the table of assignments (see

Example 4.6).

Proposition 4.3.4 Given a CNF formula ϕ, if 〈l2, 1〉 ∈ BCP(〈l1, 1〉), then the clause

(¬l1 ∨ l2) is an implicate of ϕ.

Proof. Let us refer to Ω as the ordered set of clauses involved in the sequence of

implications that allowed to conclude that 〈l2, 1〉 ∈ BCP(〈l1, 1〉). Clearly, l1 must be in

the first clause in Ω, and l2 must be in the last clause in Ω. Hence, if we apply a sequence

of resolution steps between clauses in Ω, s.t. the resolution steps are ordered (the first

step involves the first and the second clauses and eliminates var(l1), whereas the last

step involves the penultimate and the last clauses and eliminates var(l2)), then the clause

(¬l1 ∨ l2) is derived.

Clearly, this result can yield many irrelevant binary clauses. Hence, as already men-

tioned, the objective is to be selective about which clauses to actually consider.

76

a=0

a=1

b=0

b=1

c=0

c=1

d=0

d=1

e=0

e=1

a=1 b=0 b=1 c=0 c=1 d=0 d=1 e=0 e=1a=0

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

Figure 4.10: Inferring clause (¬a ∨ d) (I)

4.3.4 Satisfiability-Based Inferred Clauses

This section describes the inference of clauses based on formula satisfiability conditions.

Proposition 4.3.5 Given a CNF formula ϕ, for every pair of literals l1 and l2 for which

there exists a variable x such that, 〈l1, 1〉 ∈ BCP(〈x, 0〉) and 〈l2, 1〉 ∈ BCP(〈x, 1〉) then

the clause (l1 ∨ l2) is an implicate of ϕ.

Proof. Clearly, if the two possible truth assignments on xi either imply 〈l1, 1〉 or 〈l2, 1〉,

then one of these two assignments must hold. In addition, we may prove this result with

a simple resolution-based proof. If 〈l1, 1〉 ∈ BCP(〈x, 0〉), then (x ∨ l1) is an implicate of

ϕ (by using Proposition 4.3.4). If 〈l2, 1〉 ∈ BCP(〈x, 1〉), then (¬x ∨ l2) is an implicate of

ϕ (also by using Proposition 4.3.4). Resolution between these two clauses allows to infer

(l1 ∨ l2).

Proposition 4.3.6 Given a CNF formula ϕ, for any clause ω = (lt1 ∨ . . . ∨ ltk
) ∈ ϕ, all

clauses of the form, {lij
|〈lij

, 1〉 ∈ BCP(〈ltj
, 1〉), ltj

∈ ω, j = 1, . . . , k} are implicates of ϕ.

Proof. Since the original clause ω must be satisfied, any set of literals with size |ω|,

where each literal is implied by a different literal in ω, forms an implicate of ϕ. There

is also a simple resolution-based proof. Given clause ω = (lt1 ∨ . . . ∨ ltk
) ∈ ϕ, if it is

77

possible to infer the set of clauses {(¬lt1 ∨ li), . . . , (¬ltk
∨ lj)} by using Proposition 4.3.4,

then clause (li ∨ . . . ∨ lj) is inferred by resolution between this set of clauses and clause

ω.

Propositions 4.3.5 and 4.3.6 are illustrated in Examples 4.7 and 4.8, respectively.

We should observe that the number of clauses that can be created is upper-bounded

by the Cartesian product of each set of assignments that results from applying BCP to

each triggering assignment. In addition, observe that the previous proposition can yield

clauses with duplicate literals. Clearly, simple procedures can be implemented in order

to filter out these duplicate literals.

4.3.5 Unsatisfiability-Based Inferred Clauses

Next we describe the inference of clauses based on formula unsatisfiability conditions.

Proposition 4.3.7 Given a CNF formula ϕ, for all pairs l1 and l2 for which there exists

a variable x such that, 〈x, 0〉 ∈ BCP(〈l1, 0〉) and 〈x, 1〉 ∈ BCP(〈l2, 0〉) the clause (l1 ∨ l2)

is an implicate of ϕ.

Proof. If two assignments imply distinct truth values on a given variable xi, then the

two assignments must not hold simultaneously.

One additional condition related with unsatisfiability is the following:

Proposition 4.3.8 Given a CNF formula ϕ, for each set of assignments A =

BCP(〈l1, v1〉) ∪ . . . ∪ BCP(〈lk, vk〉) such that there exists a clause ω ∈ ϕ, with ω(A) = 0,

then the clause (¬l1 ∨ . . . ∨ ¬lk) is an implicate of ϕ.

Proof. If the union of sets of assignments resulting from applying BCP to a set of k

triggering assignments unsatisfies a given clause, then the simultaneous occurrence of the

k assignments must be prevented by creating a new clause.

Propositions 4.3.7 and 4.3.8 are illustrated in Examples 4.9 and 4.10, respectively.

Observe that a stronger condition can be established if the condition wj(BCP(A)) = 0

is used, at the cost of additional computational overhead. However, this would imply

78

composed application of the BCP operation, which would complicate the algorithms to

be proposed in the subsequent sections.

4.4 ProbIt: a Probing-Based SAT Preprocessor

The reasoning conditions described in the previous section were used to implement a

SAT preprocessor, ProbIt. This preprocessor is organized as follows:

1. Create the table of assignments by applying BCP to each individual assignment.

2. Apply a restricted set of the reasoning conditions described in the previous sections:

(a) Identification of necessary assignments, obtained by reasoning conditions from

Propositions 4.3.1, 4.3.2 and 4.3.3. These propositions correspond to variable

and clause probing, respectively.

(b) Identification of equivalent variables, obtained by a restricted application of

reasoning conditions from Proposition 4.3.4.

3. Iterate from 1 while more equivalent variables can be identified.

For the current version of ProbIt, we opted not to infer new clauses during prepro-

cessing. Existing experimental evidence suggests that the inference of clauses during

preprocessing can sometimes result in large numbers of new clauses, which can impact

negatively the run times of SAT solvers (Gelder & Tsuji 1993). The identification of

conditions for the selective utilization of clause inference conditions during preprocessing

is the subject of future research work.

As a result, the utilization of Proposition 4.3.4 is restricted to the inference of binary

clauses that lead to the identification of equivalent variables. Remember that two-variable

equivalence (e.g. x ↔ y) is described by the pair of clauses (¬x ∨ y) ∧ (x ∨ ¬y), that can

be represented as implications (x → y) ∧ (y → x) (and also as (¬y → ¬x) ∧ (¬x → ¬y)).

In ProbIt, rather than inferring new clauses which allow to identify equivalent variables,

it is simpler to identify equivalences without having to infer the corresponding clauses.

Based on the table of assignments, equivalent variables may be identified as follows:

79

• If 〈y, 0〉 ∈ BCP(〈x, 0〉) and 〈y, 1〉 ∈ BCP(〈x, 1〉), then x ↔ y.

• If 〈y, 1〉 ∈ BCP(〈x, 0〉) and 〈y, 0〉 ∈ BCP(〈x, 1〉), then x ↔ ¬y.

4.5 Experimental Results

In this section we present experimental results to evaluate the usefulness of the new

algorithm. Results are given for different classes of problem instances, that include some

of the hardest instances. Benchmark instances can be found on the SATLIB web site

http://www.satlib.org/.

ProbIt has been integrated on the top of JQuest2. JQuest2 results from an evolu-

tion of the JQuest SAT solver. JQuest2 is a competitive Java SAT solver which en-

tered in the second stage of the industrial category in the SAT’2003 Competition (see

http://www.satlive.org/SATCompetition/2003/comp03report/). JQuest2 is a back-

track search SAT solver, based on efficient data structures, and implementing the most

efficient backtrack search techniques, namely clause recording and non-chronological back-

tracking, search restarts, and adaptive branching heuristics. One of the main objectives of

JQuest2 is to allow the rapid prototyping of new SAT algorithms. Since ProbIt is still an

evolving preliminary implementation, the utilization of JQuest2 facilitates the evaluation

and configuration of ProbIt.

In what follows, we first analyze the improvements on JQuest2 by integrating ProbIt

as a preprocessor. Next, experimental results obtained for ProbIt+JQuest2 are compared

with results obtained for other state-of-the-art SAT solvers. Afterwards, we analyze the

reduction of variables and clauses after applying ProbIt. Finally, we give the numbers

of variable equivalences, variable probing and clause probing for specific benchmark in-

stances.

Tables 4.1 and 4.2 give the CPU time in seconds required for solving the different

classes of problem instances. For each benchmark suite, the total number of instances

is shown. For all experimental results a P-IV@1.7 GHz Linux machine with 1 GByte

of physical memory was used. The CPU time was limited to 5000 seconds. Hence, we

80

Table 4.1: Improvements on JQuest2

Family ProbIt ProbIt+JQuest2 JQuest2

barrel(8) 18.36 700.28 1,118.12

longmult(16) 544.18 1,725.17 4,658.67

queueinvar(10) 48.04 70.96 30.00

miters(25) 166.53 248.11 (2)11,175.65

fvp-unsat-1.0(4) 648.57 1,599.44 549.75

quasigroup(22) 61.21 531.43 735.25

Table 4.2: Comparison with other solvers

Family ProbIt+JQuest2 2clseq zChaff

barrel(8) 700.28 1,634.23 487.91

longmult(16) 1,725.17 2,201.37 2,191.08

queueinvar(10) 70.96 83.23 5.52

miters(25) 248.11 170.84 (2)10,537.49

fvp-unsat-1.0(4) 1,599.44 (2)13,545.74 549.75

quasigroup(22) 531.43 3,726.91 348.07

added 5000 seconds for each instance not solved in the allowed CPU time (the number of

aborted instances is indicated between parentheses).

In Table 4.1, ProbIt+JQuest2 (JQuest2 with ProbIt integrated as a preprocessor) is

compared with the original JQuest2. Moreover, the time required for the preprocessor

ProbIt is also given. Table 4.2 compares ProbIt+JQuest2 with other SAT solvers, namely

zChaff (Moskewicz et al. 2001) and 2clseq (Bacchus 2002a). zChaff is one of the most

competitive SAT solvers. On the other hand, 2clseq is also a well-known competitive SAT

solver, characterized by efficiently integrating formula manipulation techniques.

From the obtained results, several conclusions can be drawn:

• ProbIt+JQuest2 comes out as the most robust solver on the set of problem instances

considered. Despite being implemented in Java, which necessarily yields a slower

implementation, ProbIt+JQuest2 performance is indeed comparable to state-of-the-

art SAT solvers.

81

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

barrel

longmult

queueinvar

quasigroup

fvp−unsat−1.0

miters

Figure 4.11: Percentage of variables kept after applying ProbIt

• The performance of ProbIt+JQuest2 is comparable to 2clseq in instances where

formula manipulation helps on solving an instance. This explains why zChaff per-

formance is not competitive for these instances.

• ProbIt+JQuest2 performance is also comparable to zChaff performance on instances

where more sophisticated backtrack search techniques are required. Nonetheless, and

when compared to JQuest2 results, ProbIt+JQuest2 may require more time to solve

a family of benchmark examples. This can be explained by the time required for

applying ProbIt techniques. Clearly, this is a drawback when the number of variables

in the CNF formula is not reduced.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

barrel

longmult

queueinvar

quasigroup

fvp−unsat−1.0

miters

Figure 4.12: Percentage of clauses kept after applying ProbIt

Figures 4.11 and 4.12 give, respectively, the median values for the percentage of vari-

ables and clauses that are kept after applying ProbIt. Due to most of the miters’ instances

82

Table 4.3: Results for the fvp-unsat-1.0 instances

Instance Initial #Vars % Kept Vars Initial #Cls % Kept Cls Eqs VP CP

1dlx c mc ex bp f 766 97% 3725 96% 4 0 2

2dlx ca mc ex bp f 3186 94% 24640 88% 57 2 2

2dlx cc mc ex bp f 4524 91% 41704 85% 118 2 2

9vliw bp mc 19148 96% 179492 94% 324 20 26

being solved by ProbIt during preprocessing, only those instances not solved during pre-

processing were taken into account for determining the median values.

It is interesting to observe that both the percentage of kept variables and clauses ranges

from 35% to 95%. Moreover, the figures suggest a relationship between the percentage

of variables and the percentage of clauses that are kept after formula manipulation by

ProbIt. In addition, the results indicate that the reduction in the number of variables

and clauses is likely to be related with ProbIt’s efficiency.

Finally, Tables 4.3 and 4.4 bring some more insights on the use of ProbIt. Table 4.3

gives results for the fvp-unsat-1.0 instances, whereas Table 4.4 gives results for the long-

mult instances. For all the instances in both tables, we give the initial number of variables

and clauses, as well as the percentage of variables and clauses kept after applying ProbIt.

Results for instances solved during preprocessing are not presented. Moreover, the num-

ber of two-variable equivalences (Eqs) and the number of necessary assignments (found

either based on variable probing (VP) or clause probing(CP)) are also given.

The results in Table 4.3 clearly indicate that applying ProbIt to fvp-unsat-1.0 instances

does not pay-off. Also, results from Table 4.1 already indicate that ProbIt is not efficient

for these instances. These results may be explained by the reduced number of times the

different formula manipulation techniques are applied.

Table 4.4 gives results for a the longmult family benchmark, for which ProbIt is very

efficient (see Table 4.1). These results clearly indicate that the significant reduction in the

number of variables and clauses, due to the number of equivalent variables and necessary

assignments identified, reduces the required search effort for solving each problem instance.

83

Table 4.4: Results for the longmult instances

Instance Initial #Vars % Kept Vars Initial #Cls % Kept Cls Eqs VP CP

longmult3 1555 35% 4767 39% 527 28 23

longmult4 1966 39% 6069 45% 693 26 11

longmult5 2397 41% 7431 48% 874 31 11

longmult6 2848 43% 8853 52% 1074 32 19

longmult7 3319 44% 10335 54% 1285 29 23

longmult8 3810 45% 11877 57% 1511 26 22

longmult9 4321 46% 13479 59% 1753 23 21

longmult10 4852 46% 15141 61% 2013 20 20

longmult11 5403 46% 16863 62% 2288 17 20

longmult12 5974 47% 18645 64% 2575 13 17

longmult13 6565 46% 20487 64% 2891 10 34

longmult14 7176 45% 22389 63% 3211 9 36

longmult15 7807 44% 24351 62% 3550 6 32

Despite the promising experimental results, probing-based formula manipulation mer-

its additional research work. For instance with a large number of variables, the construc-

tion of the table of assignments can become prohibitive, due to the large number of implied

assignments that can potentially be identified. Hence, the conditional creation of entries

in the table of assignments needs to be addressed. Probing-based formula manipulation

can also be more tightly integrated with backtrack search solvers, for example by allowing

the application of probing-based techniques after search restarts.

4.6 Related Work

The ProbIt algorithm described in the previous section uses probing as the basis for im-

plementing a number of formula manipulation techniques. In this section we relate ProbIt

with previous work in probing techniques and other formula manipulation techniques.

84

4.6.1 Probing-Based Techniques

The idea of establishing hypotheses and inferring facts from those hypotheses has

been studied in SAT and CSP. For CSP, the original reference is most likely the work

of Freuder (Freuder 1978) on k-consistency. It can also be related with sigleton arc-

consistency techniques (Debruyne & Bessière 1997). In the SAT domain, the notion of

probing values and inferring facts from the probed values has been extensively studied in

the recent past (Crawford & Auton 1993; Groote & Warners 2000; Berre 2001; Brafman

2001; Dubois & Dequen 2001).

The failed literal rule is a well-known and extensively used probing-based technique

(see for example (Crawford & Auton 1993)): if the assignment x = 0 yields a conflict

(due to BCP), then we must assign x = 1. This rule is covered by necessary assignments

obtained from unsatisfiability conditions (Proposition 4.3.3).

Variable probing is a probing-based technique, which consists of applying the branch-

merge rule to each variable (Berre 2001; Groote & Warners 2000). The branch-merge

rule is the inference rule used in the St̊almark’s Method (St̊almarck 1989). Common

assignments to variables are identified, by detecting and merging equivalent branches. In

addition, variable probing is often used as part of look-ahead branching heuristics in SAT

solvers (Li & Anbulagan 1997). Observe that variable probing is covered by reasoning

conditions established with Proposition 4.3.1.

Clause probing is similar to variable probing, even though variable probing is based on

variables and clause probing is based on clauses. Clause probing consists of evaluating

clause satisfiability requirements for identifying common assignments to variables. Com-

mon assignments are deemed necessary for a clause to become satisfied and consequently

for the formula to be satisfied. Observe that clause probing is conceptually similar to the

recursive learning paradigm for Boolean networks, proposed in (Kunz & Stoffel 1997).

These techniques have been applied to SAT in (Marques-Silva & Glass 1999) and more

recently in the 2-Simplify preprocessor (Brafman 2001). In our framework, clause probing

is captured by Proposition 4.3.2. To the best of our knowledge, no other work proposes

85

the joint utilization of variable and clause probing.

The notion of literal dropping considers applying sets of simultaneous assignments for

inferring clauses that subsume existing clauses (Dubois & Dequen 2001). For a clause

(l ∨ β), where β is a disjunction of literals, if assigning value 0 to all literals in β yields

a conflict, then (β) is an implicate of ϕ. These techniques and the one described by

Proposition 4.3.8 are related as long as both of them infer clauses from unsatisfiability

requirements. The work of (Dubois & Dequen 2001) assumes a specific clause and con-

siders BCP of simultaneous sets of assignments. Proposition 4.3.8 allows any k triggering

assignments, but considers the separate application of BCP (which may yield fewer im-

plied assignments). Nonetheless, Proposition 4.3.8 proposes more general conditions for

inferring clauses, although based on a less powerful unit propagation.

4.6.2 Other Manipulation Techniques

Two-variable equivalence is a well-known formula manipulation technique that has

been included in ProbIt, by a restricted application of reasoning conditions from Propo-

sition 4.3.4. If x and y are equivalent, then the truth values of x and y must be

the same. Consequently, we can replace y by x on all occurrences of y, thus elimi-

nating variable y from the CNF formula. Additional two-variable equivalence condi-

tions can be established, namely by the identification of Strongly Connected Compo-

nents (Aspvall, Plass, & Tarjan 1979). It is interesting to observe that the existing

strongly connected components in a CNF formula are captured from the construction

of the table of assignments and the application of Proposition 4.3.4. Furthermore, so-

phisticated techniques have been developed to detect chains of biconditionals (Li 2000;

Ostrowski et al. 2002).

The 2-closure of a 2CNF sub-formula (Gelder & Tsuji 1993) allows to infer additional

binary clauses. The identification of the transitive closure of the implication graph is

obtained from the construction of the table of assignments and the application of Propo-

sition 4.3.4: if 〈y, 1〉 ∈ BCP(〈x, 1〉) then create clause (¬x ∨ y).

More recently, a competitive SAT solver – 2clseq – incorporating hyper-resolution with

86

binary clauses has been proposed (Bacchus 2002a). Later, a restricted and more efficient

implementation of 2clseq originated a preprocessor (Bacchus & Winter 2003). Given the

set of clauses (¬l1∨x)∧(¬l2∨x)∧...∧(¬lk∨x)∧(l1∨l2∨...∨lk∨y), hyper-resolution allows

inferring (x∨y). Once again, observe that this technique is covered by the construction of

the table of assignments and the application of Proposition 4.3.4: for the same example,

if 〈y, 1〉 ∈ BCP(〈x, 0〉) then create clause (x ∨ y).

Compared with existing work, probing-based preprocessing techniques not only natu-

rally capture all the above mentioned formula manipulation techniques, but also further

allow the development of new techniques. In addition, the proposed unified framework

also allows relating and comparing different formula manipulation techniques.

4.7 Summary

This chapter introduces a generic framework for applying probing-based techniques.

Probing consists in formulating hypothetical scenarios, obtained by assigning a value to a

variable, and then applying unit propagation. The results of probing are then kept on a

table of assignments. Afterwards, different reasoning conditions are applied to the table

of assignments, allowing either to identify necessary assignments or to infer new clauses.

This new approach integrates for the first time in a single framework most formula

manipulation techniques and allows developing new techniques. For example, failed lit-

erals are easily detected. Furthermore, variable probing and clause probing techniques

are naturally captured by analyzing, respectively, each set of entries corresponding to

both literals of a variable or to all the literals in a clause. This framework also allows to

establish two-variable equivalences and the 2-closure, among other formula manipulation

techniques.

Finally, we introduce ProbIt, a new probing-based formula manipulation SAT pre-

processor. ProbIt is a probing-based preprocessor that builds a table of assignments for

each hypothetical scenario and further applies a set of reasoning conditions, resulting on

the application of different formula manipulation techniques. The obtained experimental

87

results clearly indicate that ProbIt is effective in reducing the required search effort and

therefore in increasing the robustness of state-of-the-art SAT solvers.

88

5

Unrestricted Backtracking

Advanced techniques applied to backtrack search SAT algorithms have achieved re-

markable improvements (Marques-Silva & Sakallah 1996; Bayardo Jr. & Schrag 1997;

Li & Anbulagan 1997; Zhang 1997; Moskewicz et al. 2001; Goldberg & Novikov 2002;

Ryan 2004), having been shown to be crucial for solving hard instances of SAT obtained

from real-world applications.

From a practical perspective, SAT algorithms should be able to prove unsatisfiability,

since this is often the objective in a large number of significant real-world applications.

Nevertheless, it is also widely accepted that local search can often have clear advantages

with respect to backtrack search, since it is allowed to start the search over again whenever

it gets stuck in a locally optimal partial solution.

The advantages of local search have motivated the study of hybrid approaches. Most

of them build on local search algorithms and are able to guarantee completeness at the

cost of adding clauses derived from conflicts. Examples of such algorithms are GSAT with

dynamic backtracking (Ginsberg & McAllester 1994), learn-SAT (Richards & Richards

2000) and also CLS (Fang & Ruml 2004). Conversely, the algorithm proposed by Prest-

wich (Prestwich 2000) builds on backtrack search but gives some freedom to the search,

by adding randomness to the backtrack step. In this algorithm, the backtrack point is

randomly picked each time a conflict is identified. The backtrack point corresponds to the

decision level of a literal randomly selected from the literals in the just created conflict

89

clause.

By not always backtracking to the most recent untoggled decision variable, Prestwich’s

algorithm is able to often avoid the characteristic trashing of backtrack search algorithms,

and so can be very competitive for specific classes of problem instances. We should note,

however, that this algorithm is not complete and so cannot establish unsatisfiability.

In this chapter, we propose to select the backtrack point without restrictions within a

complete backtrack search algorithm. The new algorithm, called unrestricted backtrack-

ing, avoids thrashing during backtrack search. Moreover, one can think of combining

different forms of relaxing the identification of the backtrack point, i.e. different forms of

backtracking.

This chapter is organized as follows. We first describe random backtracking (Lynce,

Baptista, & Marques-Silva 2001a), which is tightly related with the major motivation

for this work: to add to the efficient backtrack search algorithms the advantages of local

search. Next, we introduce another new form of backtrack search, which is based on the

use of heuristic knowledge to select the backtrack point (Bhalla et al. 2003a). Afterwards,

unrestricted backtracking appears as a natural generalization of randomized and heuristic

backtracking. Moreover, completeness conditions for the resulting SAT algorithm are

established. Finally, we give experimental results and describe related work.

5.1 Randomized Backtracking

The utilization of different forms of randomization in SAT algorithms has seen in-

creasing acceptance in recent years. Randomization is essential in many local search

algorithms (Selman & Kautz 1993). Many local search algorithms repeatedly restart the

(local) search by randomly generating complete assignments. Moreover, randomization

can also be used for deciding among different (local) search strategies (McAllester, Selman,

& Kautz 1997).

The efficient use of randomization in local search SAT algorithms has motivated the

integration of randomization in the three main engines of a backtrack search algorithm.

90

R R?

R!

1 2

3

SAT Solver Randomized SAT Solver

Decide

Diagnose

DeduceDeduce

Diagnose

Decide

Figure 5.1: Introducing randomization in a backtrack search SAT solver

(These engines are described in Chapter 2.) The introduction of randomization in each

of the three main engines is illustrated in Figure 5.1:

1. Randomization can be (and has actually been (Bayardo Jr. & Schrag 1997; Baptista

& Marques-Silva 2000; Moskewicz et al. 2001)) applied to the decision engine by

randomizing the variable selection heuristic. Variable selection heuristics, by being

greedy in nature, are unlikely but unavoidably bound to select the wrong assignment

at the wrong time for the wrong instance. The utilization of randomization helps

reducing the probability of seeing this happening.

2. Randomization can be applied to the deduction engine by randomly picking the or-

der in which implied variable assignments are handled during Boolean Constraint

Propagation. Observe that the number of implied variable assignments does not

depend on the introduction of randomization. For this engine, randomization only

affects the order in which assignments are implied, and hence can only affect which

conflicting clause is identified first. Even though randomizing the deduction engine

allows randomizing which conflicting clause is analyzed each time a conflict is iden-

tified, the number of conflicting clauses is in general not large, and so it is not clear

whether randomization of the deduction engine can play a significant role.

3. The diagnosis engine can be randomized by randomly selecting the point to back-

track to. This form of backtracking is referred to as random backtracking. The

randomized backtracking procedure is outlined in Algorithm 5.1. After a conflict

(i.e. an unsatisfied clause ω) is identified, a conflict clause ωc is created. The conflict

clause ωc is then used for randomly deciding which decision assignment x is to be

91

picked, with x ∈ ωc. Then, the search backtracks to the decision level where variable

x has been assigned. This contrasts with the usual non-chronological backtracking

approach, in which the most recent decision assignment variable is selected as the

backtrack point.

Algorithm 5.1: Randomized backtracking

Random Backtracking(ω)

(1) ωc = Record clause(ω)

(2) x = Randomly pick decision assignment variable(ωc)

(3) Apply backtrack step(x, ωc)

After (randomly) selecting a backtrack point, the actual backtrack step can be orga-

nized in two different ways. The backtrack step can be destructive, meaning that the

search tree is erased from the backtrack point down. In contrast, the backtrack step can

be non-destructive, meaning that the search tree is not erased; only the backtrack point

results in a variable assignment being toggled. This approach has much in common with

dynamic backtracking (Ginsberg 1993).

The two randomized backtracking approaches differ. Destructive random backtracking

is more drastic and attempts to rapidly cause the search to explore other portions of the

search space. Non-destructive random backtracking has characteristics of local search, in

which the current (partial) assignment is only locally modified.

Either destructive or non-destructive random backtracking can lead to potentially

erratic algorithms, since there is no locality on how backtracking is performed. As a result,

we propose to only applying random backtracking after every K conflicts; in between non-

chronological backtracking is applied. We should note that the value of K is user-defined.

In a situation where K 6= 1, the application of random backtracking can either consider

the most recent recorded clause or, instead, consider a target set that results from the

union of the recorded conflict clauses in the most recent K conflicts. The first solution is

characterized by having no memory of past conflicts, whereas the second solution considers

equally all identified conflicts.

Finally, observe that randomized backtracking strategies can be interpreted as a gen-

eralization of search restart strategies (Gomes, Selman, & Kautz 1998). Search restarts,

92

jointly with a randomized variable selection heuristic, ensure that different sub-trees are

searched each time the search algorithm is restarted. However, whereas search restarts

always start the search process from the root of the search tree, randomized backtracking

randomly selects the point in the search tree from which the search is to be restarted

(assuming destructive backtracking is used).

5.2 Heuristic Backtracking

Randomized backtracking is the first algorithm of a new generation of backtrack search

algorithms, characterized by having no restrictions on selecting the backtrack point in the

search tree. Obviously, this new family of backtrack search algorithms is incomplete,

although there are different techniques that can be used to ensure completeness.

After introducing random backtracking, other incomplete forms of backtracking natu-

rally appear. For example, one may envision heuristic backtracking (Bhalla et al. 2003a).

The heuristic backtracking algorithm is quite similar to the random backtracking algo-

rithm. However, the later randomly selects the backtrack point in the search tree from

the variables in the most recently recorded clause, whereas the former selects the back-

track point as a function of variables in the most recently recorded clause. For example,

in (Bhalla et al. 2003a) three different forms of heuristic backtracking are suggested,

based on three different heuristics:

1. One heuristic that decides the backtrack point given the information of the most

recently recorded conflict clause. This approach is called plain heuristic backtracking.

2. Another heuristic that is inspired in the VSIDS branching heuristic, used by

Chaff (Moskewicz et al. 2001). This approach is called VSIDS-like heuristic back-

tracking.

3. Finally, one heuristic that is inspired in BerkMin’s branching heuristic (Goldberg &

Novikov 2002). This approach is called BerkMin-like heuristic backtracking.

In all cases the backtrack point is computed as the variable with the largest heuristic

metric.

93

Algorithm 5.2: Unrestricted backtracking

Unrestricted Backtracking(ω)

(1) ωc = Record clause(ω)

(2) x = Pick any decision assignment variable(ωc)

(3) Apply backtrack step(x, ωc)

5.3 Unrestricted Backtracking

Random backtracking and heuristic backtracking can be viewed as special cases of

unrestricted backtracking (Lynce & Marques-Silva 2002b), the main difference being that

in unrestricted backtracking any form of backtrack step can be applied. In random back-

tracking the backtrack point is computed randomly from the current conflict. In heuristic

backtracking the backtrack point is computed from heuristic information, obtained from

the current (and past) conflicts. In addition, if search restarts are a special case of random

backtracking, then search restarts are also a special case of unrestricted backtracking.

The unrestricted backtracking algorithm is outlined in Figure 5.2. Clearly, this al-

gorithm is quite similar to the random backtracking algorithm (see Fig 5.1). However,

random backtracking randomly selects the backtrack point in the search tree from the

variables in the most recently recorded clause, whereas unrestricted backtracking selects

any backtrack point. Moreover, observe that in some forms of unrestricted backtrack-

ing clause ωc does not necessarily have to be taken into account, i.e. some forms of

unrestricted backtracking may pick a variable x s.t. x /∈ ωc.

Unrestricted backtracking algorithms allow the search to backtrack to any point in the

current search path whenever a conflict is reached, and for this reason most of the forms

of unrestricted backtracking are incomplete forms of backtracking. As a consequence of

the freedom for selecting the backtrack point in the decision tree, unrestricted backtrack-

ing entails a policy for applying different backtrack steps in sequence. Each backtrack

step can be selected among chronological backtracking, non-chronological backtracking

or incomplete forms of backtracking (e.g. search restarts, random backtracking, among

many others). More formally, unrestricted backtracking consists of defining a sequence of

Backtrack Steps {BSt1, BSt2, BSt3, . . .} such that each backtrack step BSti can either be

94

NCB

SS

CB IFB

S

?

Figure 5.2: Comparing Chronological Backtracking (CB), Non-Chronological Backtracking (NCB)
and Incomplete Form of Backtracking (IFB)

a chronological (CB), a non-chronological (NCB) or an incomplete form of backtracking

(IFB).

Observe that the definition of unrestricted backtracking allows capturing the back-

tracking search strategies used by current state-of-the-art SAT solvers (Marques-Silva

& Sakallah 1996; Bayardo Jr. & Schrag 1997; Li & Anbulagan 1997; Zhang 1997;

Moskewicz et al. 2001; Goldberg & Novikov 2002; Ryan 2004). Indeed, if the unrestricted

backtracking strategy specifies always applying the chronological backtracking step or

always applying the non-chronological backtracking step, then we respectively capture

the chronological and non-chronological backtracking search strategies. Nonetheless, in

this context we consider that an unrestricted backtracking algorithm always entails an

incomplete algorithm, meaning that some of the backtrack steps are incomplete.

Unrestricted backtracking is particularly useful for giving a unified representation for

different backtracking strategies. Consequently, unrestricted backtracking further allows

establishing general completeness conditions for classes of backtracking strategies and

not only for each individual strategy, as it has often been done in the past (Yokoo 1994;

Richards & Richards 2000). We should note that the completeness conditions established

to all organizations of unrestricted backtracking may obviously be applied to any special

case of unrestricted backtracking (e.g. random backtracking and heuristic backtracking).

Even though within unrestricted backtracking any form of backtrack step can be ap-

plied (CB, NCB or IFB), unrestricted backtracking is characterized as performing an in-

complete form of backtracking at least in some of the backtrack steps. Figure 5.2 compares

CB, NCB and IFB. The main goal is to exemplify how incomplete forms of backtracking

can lead to incompleteness. The different algorithms are exemplified for a generic search

95

tree, where the search is performed accordingly to a depth-first search, and therefore the

dashed branches define the search space not searched so far. Moreover, the search path

that leads to the solution is marked with letter S. For CB and NCB the solution is easily

found. CB makes the search backtrack to the most recent yet untoggled decision variable,

whereas in NCB the backtrack point is computed as the most recent decision assignment

from all the decision assignments represented in the recorded clause, allowing the search

to skip portions of the search tree that are found to have no solution. However, since with

an incomplete form of backtracking the search backtracks without restrictions, the search

space that leads to the solution is simply skipped for IFB. What has to be done in order

to assure the correctness and completeness of an incomplete form of backtracking? First,

and similarly to local search, we have to assume that variable toggling in an incomplete

form of backtracking is reversible. For the given example, this means that the solution

can be found in a subsequent search, although the solution would have been skipped if

variable toggling was not reversible. Clearly, reversible toggling allows to repeat search

paths, at the risk of looping. However, techniques to avoid this problem are analyzed

in (Lynce & Marques-Silva 2002b) and will be reviewed in what follows of this chapter.

5.4 Completeness Issues

In this section we address the problem of guaranteeing the completeness of SAT algo-

rithms that implement some form of unrestricted backtracking. It is clear that unrestricted

backtracking can yield incomplete algorithms. Hence, for each newly devised SAT algo-

rithm, that utilizes some form of unrestricted backtracking, it is important to be able to

apply conditions that guarantee the completeness of the resulting algorithm. Broadly, the

completeness techniques for unrestricted backtracking can be organized in two classes:

• Marking recorded clauses as non-deletable. This solution may yield an exponential

growth in the number of recorded clauses, although in practice this situation does

not arise frequently.

• Increasing a given constraint (e.g. the number of non-deletable recorded causes) in

96

CONFLICT

xj

(¬xi ∨ xj ∨ xk)
path clause:

conflict path

xi = 1

xi

conflict sub-path

xk

xi = 0

conflict clause:
(¬xi ∨ xk)

Figure 5.3: Search tree definitions

between applications of different backtracking schemes. This solution can be used

to guarantee a polynomial growth of the number of recorded clauses.

The results presented in this section generalize, for the unrestricted backtracking algo-

rithm, completeness results that have been proposed in the past for specific backtracking

relaxations. We start by establishing, in a more general context, a few already known

results. Afterwards, we establish additional results regarding unrestricted backtracking.

In what follows we assume the organization of a backtrack search SAT algorithm

as described earlier in Chapter 2. The main loop of the algorithm consists of selecting a

variable assignment (i.e. a decision assignment), making that assignment, and propagating

that assignment using BCP. In the presence of an unsatisfied clause (i.e. a conflict), all

the current decision assignments define a conflict path in the search tree. (Observe that

we restrict the definition of conflict path solely with respect to the decision assignments.)

A straightforward conflict analysis procedure consists of constructing a clause with all the

decision assignments in the conflict path. In this case the created clause is referred to as

a path clause. Moreover, after a conflict is identified we may also apply a conflict analysis

procedure (Marques-Silva & Sakallah 1996; Bayardo Jr. & Schrag 1997; Moskewicz et al.

2001) to identify a subset of the decision assignments that represent a sufficient condition

for producing the same conflict. The subset of decision assignments that is declared to

be associated with a given conflict is referred to as a conflict sub-path. In this case the

97

created clause is referred to as a conflict clause. Clearly, a conflict sub-path is a subset of

a conflict path. Also, a conflict clause is a subset of a path clause, considering that these

clauses are based on decision assignments.

Figure 5.3 illustrates the definitions of conflict path, path clause, conflict sub-path and

conflict clause. We can now establish a few general results that will be used throughout

this section.

Proposition 5.4.1 If an unrestricted backtracking search algorithm does not repeat con-

flict sub-paths, then it does not repeat conflict paths.

Proof. (Sketch) If a conflict sub-path is not repeated, then no conflict path can contain

the same sub-path, and so no conflict path can be repeated.

Proposition 5.4.2 If an unrestricted backtracking search algorithm does not repeat con-

flict paths, then it is complete.

Proof. (Sketch) Assume a problem instance with n variables. Observe that there are

2n possible conflict paths. If the algorithm does not repeat conflict paths, then it must

necessarily terminate.

Proposition 5.4.3 If an unrestricted backtracking search algorithm does not repeat con-

flict sub-paths, then it is complete.

Proof. (Sketch) Given the two previous results, if no conflict sub-paths are repeated,

then no conflict paths are repeated, and so completeness is guaranteed.

Proposition 5.4.4 If the number of times an unrestricted backtracking search algorithm

repeats conflict paths or conflict sub-paths is upper-bounded by a constant, then the back-

track search algorithm is complete.

Proof. (Sketch) We prove the result for conflict paths; for conflict sub-paths, it is

similar. Let M be a constant denoting an upper bound on the number of times a given

conflict path can be repeated. Since the total number of distinct conflict paths is 2n, and

since each can be repeated at most M times, then the total number of conflict paths the

98

backtrack search algorithm can enumerate is M × 2n, and so the algorithm is complete.

Proposition 5.4.5 For an unrestricted backtracking search algorithm the following holds:

1. If the algorithm creates a path clause for each identified conflict, then the search

algorithm repeats no conflict paths.

2. If the algorithm creates a conflict clause for each identified conflict, then the search

algorithm repeats no conflict sub-paths.

In both cases, the search algorithm is complete.

Proof. (Sketch) Recall that the search algorithm always applies BCP after making a

decision assignment. Hence, if a clause describing a conflict has been recorded, and not

deleted, BCP guarantees that a conflict is declared, without requiring the same set of

decision assignments that yields the original conflict. As a result, conflict paths are not

repeated. The same holds true respectively for conflict clauses and conflict sub-paths.

Since either conflict paths or conflict sub-paths are not repeated, the search algorithm is

complete (from Propositions 5.4.2 and 5.4.3).

Observe that Proposition 5.4.5 holds independently of which backtrack step is taken

each time a conflict is identified. Hence, as long as we record a conflict for each identified

conflict, any form of unrestricted backtracking yields a complete algorithm. Less general

formulations of this result have been proposed in the recent past (Ginsberg 1993; Yokoo

1994; Richards & Richards 2000; Fang & Ruml 2004).

The results established so far guarantee completeness at the cost of recording (and

keeping) a clause for each identified conflict. In what follows we propose and analyze

conditions for relaxing this requirement. As a result, we allow for some clauses to be

deleted during the search process, and only require some specific recorded clauses to be

kept. We say that a recorded clause is kept provided it is prevented from being deleted

during the subsequent search.

99

However, we should note that clause deletion does not apply to chronological back-

tracking strategies and that, as shown in (Marques-Silva & Sakallah 1999), existing clause

deletion policies for non-chronological backtracking strategies do not compromise the com-

pleteness of the algorithm.

Proposition 5.4.6 If an unrestricted backtracking algorithm creates a conflict clause (or

a path clause) after every M identified conflicts, then the number of times that the algo-

rithm repeats conflict sub-paths (or conflict paths) is upper-bounded.

Proof. (Sketch) Clearly, by creating (and recording) a conflict clause (or a path clause)

after every M identified conflicts, the number of times a given conflict sub-path (or con-

flict path) is repeated is upper-bounded. Hence, using the results of Proposition 5.4.4

completeness is guaranteed.

Proposition 5.4.7 If an unrestricted backtracking algorithm records (and keeps) a con-

flict clause for each identified conflict for which an IFB step is taken, then the backtrack

search algorithm is complete.

Proof. (Sketch) Observe that there are at most 2n IFB steps that can be taken, because

a conflict clause is recorded for each identified conflict for which an IFB step is taken,

and so conflict sub-paths due to IFB steps cannot be repeated. Moreover, the additional

backtrack steps that can be applied (CB and NCB) also ensure completeness. Hence, the

resulting algorithm is complete.

Moreover, we can also generalize Proposition 5.4.4.

Proposition 5.4.8 Given an integer constant M , an unrestricted backtracking algorithm

is complete if it records (and keeps) a conflict-clause after every M identified conflicts for

which an IFB step is taken.

Proof. (Sketch) The result immediately follows from Propositions 5.4.5 and 5.4.7.

Observe that for the previous conditions, the number of recorded clauses grows lin-

early with the number of conflicts where an IFB step is taken, and so in the worst-case

exponentially in the number of variables.

100

Other approaches to guarantee completeness involve increasing the value of some con-

straint associated with the search algorithm. The following results illustrate these ap-

proaches.

Proposition 5.4.9 Given an unrestricted backtracking strategy that applies a sequence of

backtrack steps, if for this sequence the number of conflicts in between IFB steps strictly

increases after each IFB step, then the resulting algorithm is complete.

Proof. (Sketch) If only CB or NCB steps are taken, then the resulting algorithm is

complete. When the number of conflicts in between IFB steps reaches 2n, the algorithm

is guaranteed to terminate.

We should also note that this result can be viewed as a generalization of the

completeness-ensuring condition used in search restarts, that consists of increasing the

backtrack cutoff value after each search restart (Baptista & Marques-Silva 2000). Given

this condition, the resulting algorithm resembles iterative-deepening. Moreover, observe

that in this situation the growth in the number of clauses can be made polynomial, pro-

vided clause deletion is applied on clauses recorded from NCB and IFB steps.

The next result establishes conditions for guaranteeing completeness whenever large

recorded clauses (due to an IFB step) are opportunistically deleted. The idea is to increase

the size of recorded clauses that are kept after each IFB step. Another approach is to

increase the life-span of large-recorded clauses, by increasing the relevance-based learning

threshold (Bayardo Jr. & Schrag 1997).

Proposition 5.4.10 Suppose an unrestricted backtracking strategy that applies a specific

sequence of backtrack steps. If for this sequence, either the size of the largest recorded

clause kept or the size of the relevance-based learning threshold is strictly increased after

each IFB step is taken, then the resulting algorithm is complete.

Proof. (Sketch) When either the size of the largest recorded clause reaches value n, or

the relevance-based learning threshold reaches value n, all recorded clauses will be kept,

and so completeness is guaranteed from Proposition 5.4.5.

101

Observe that for this last result the number of clauses can grow exponentially with the

number of variables. Moreover, we should note that the observation regarding increasing

the relevance-based learning threshold was first suggested in (Moskewicz et al. 2001).

One final result addresses the number of times conflict paths and conflict sub-paths

can be repeated.

Proposition 5.4.11 Under the conditions of Proposition 5.4.9 and Proposition 5.4.10,

the number of times a conflict path or a conflict sub-path is repeated is upper-bounded.

Proof. (Sketch) Clearly, the resulting algorithms are complete, and so known to ter-

minate after a maximum number of backtrack steps (that is constant for each instance).

Hence, the number of times a conflict path (or conflict sub-path) can be repeated is

necessarily upper-bounded.

5.5 Experimental Results

This section presents and analyzes experimental results that evaluate the efficiency

of the techniques proposed in this chapter to solve hard real-world problem instances.

Recent examples of such instances are the superscalar processor verification problem in-

stances developed by M. Velev and R. Bryant (Velev & Bryant 1999), available from

http://www.ece.cmu.edu/∼mvelev/. We consider four sets of instances:

• sss1.0a with 9 satisfiable instances;

• sss1.0 with 40 selected satisfiable instances;

• sss2.0 with 100 satisfiable instances;

• sss-sat-1.0 with 100 satisfiable instances.

For all the experimental results presented in this section, a PIII @ 866MHz Linux

machine with 512 MByte of RAM was used. The CPU time limit for each instance was

set to 200 seconds, except for the sss-sat-1.0 instances for which it was set to 1000 seconds.

Since randomization was used, the number of runs was set to 10 (due to the large number

102

of problem instances being solved). Moreover, the results shown correspond to the median

values for all the runs.

In order to analyze the different techniques, we implemented the Quest0.5 SAT solver.

Quest0.5 is built on top of the GRASP SAT solver (Marques-Silva & Sakallah 1996), but

incorporates restarts as well as random backtracking. Random backtracking is applied

non-destructively after every K backtracks. For Quest0.5 we chose to use the number

of backtracks instead of the number of conflicts to decide when to apply random back-

tracking. This results from how the search algorithm in the original GRASP code is

organized (Marques-Silva & Sakallah 1996).

Moreover, for the experimental results shown below, the following configurations were

selected:

• Rst1000+inc100 indicates that restarts are applied after every 1000 backtracks

(i.e. the initial cutoff value is 1000), and the increment to the cutoff value after

each restart is 100 backtracks. Observe that this increment is necessary to ensure

completeness.

• Rst1000+cr indicates that restarts are applied after every 1000 backtracks and

that clause recording is applied for each search restart. This strategy ensures com-

pleteness.

• RB1 indicates that random backtracking is taken at every backtrack step. A conflict

clause is kept for each random backtrack to guarantee completeness.

• RB10 applies random backtracking after every 10 backtracks. Again, a conflict

clause is kept for each random backtrack to guarantee completeness.

• Rst1000+RB1 means that random backtracking is taken at every backtrack and

that restarts are applied after every 1000 backtracks. A conflict clause is kept for

each randomized backtracking and search restart.

• Rst1000+RB10 means that random backtracking is taken after every 10 backtracks

and also that restarts are applied after every 1000 backtracks. Again, a conflict clause

103

Table 5.1: Results for the SSS instances

Inst sss1.0a sss1.0 sss2.0 sss-sat-1.0

Quest 0.5 Time Nodes X Time Nodes X Time Nodes X Time Nodes X

Rst1000+inc100 208 59511 0 508 188798 0 1412 494049 0 50512 8963643 39

Rst1000+cr 161 52850 0 345 143735 0 1111 420717 0 47334 7692906 28

RB1 79 11623 0 231 29677 0 313 31718 0 10307 371277 1

RB10 204 43609 0 278 81882 0 464 118150 0 6807 971446 1

Rst1000+RB1 79 11623 0 221 28635 0 313 31718 0 10330 396551 2

Rst1000+RB10 84 24538 0 147 56119 0 343 98515 0 7747 1141575 0

GRASP 1603 257126 8 2242 562178 11 13298 3602026 65 83030 12587264 82

is kept for each randomized backtracking and search restart.

The results for Quest0.5 on the SSS instances are shown in Table 5.1. In this table,

Time denotes the CPU time, Nodes the number of decision nodes, and X the average

number of aborted problem instances. As can be observed, the results for Quest0.5 reveal

interesting trends:

• Random backtracking taken at every backtrack step allows significant reductions in

the number of decision nodes.

• The elimination of repeated search paths in restarts, when based on keeping a conflict

clause for each restart and when compared with the use of an increasing cutoff value,

helps reducing the total number of nodes and also the CPU time.

• The best results are always obtained when random backtracking is used, indepen-

dently of being or not used together with restarts.

• Rst1000+RB10 is the only configuration able to solve all the instances in the

allowed CPU time for all the runs.

The experimental results reveal additional interesting patterns. When compared with

the results for GRASP, Quest 0.5 yields dramatic improvements. This is confirmed by

evaluating either the CPU time, the number of nodes or the number of aborted instances.

Furthermore, even though the utilization of restarts reduces the amount of search, it is also

clear that more significant reductions can be achieved with randomized backtracking. In

104

addition, the integrated utilization of search restarts and randomized backtracking allows

obtaining the best results, thus motivating the utilization of multiple search strategies in

backtrack search SAT algorithms.

5.6 Related Work

In the past, different forms of backtracking have been proposed (Stallman & Sussman

1977; Gaschnig 1979; Dechter 1990; Prosser 1993). The introduction of relaxations in the

backtrack step is most likely related to dynamic backtracking (Ginsberg 1993). Dynamic

backtracking establishes a method by which backtrack points can be moved deeper in the

search tree. This allows avoiding the unneeded erasing of the amount of search that has

been done thus far. The objective is to find a way to directly erase the value assigned

to a variable as opposed to backtracking to it, moving the backjump variable to the

end of the partial solution in order to replace its value without modifying the values of

the variables that currently follow it. Afterwards, Ginsberg and McAllester combined

local search and dynamic backtracking in an algorithm which enables arbitrary search

movement (Ginsberg & McAllester 1994), starting with any complete assignment and

evolving by flipping values of variables obtained from the conflicts.

In weak-commitment search (Yokoo 1994), the algorithm constructs a consistent par-

tial solution, but commits to the partial solution weakly. In weak-commitment search,

whenever a conflict is reached, the whole partial solution is abandoned, in explicit contrast

to standard backtracking algorithms where the most recently added variable is removed

from the partial solution.

Search restarts have been proposed and shown effective for hard instances of

SAT (Gomes, Selman, & Kautz 1998). The search is repeatedly restarted whenever a

cutoff value is reached. The algorithm proposed is not complete, since the restart cutoff

point is kept constant. In (Baptista & Marques-Silva 2000), search restarts were jointly

used with learning for solving hard real-world instances of SAT. This latter algorithm is

complete, since the backtrack cutoff value increases after each restart. One additional

105

example of backtracking relaxation is described in (Richards & Richards 2000), which is

based on attempting to construct a complete solution, that restarts each time a conflict is

identified. More recently, highly-optimized complete SAT solvers (Moskewicz et al. 2001;

Goldberg & Novikov 2002) have successfully combined non-chronological backtracking

and search restarts, again obtaining remarkable improvements in solving hard real-world

instances of SAT.

5.7 Summary

This chapter proposes the utilization of unrestricted backtracking in backtrack search

SAT solvers, a new form of backtracking that allows to select the backtrack point without

restrictions.

The development of this new generation of backtrack algorithms was motivated by

the integration of randomization in backtrack algorithms, due to randomization being

successfully used in local search. Adding randomization to the backtrack step has lead to

random backtracking, where the backtrack level is randomly selected from the decision

levels of the variables in the just recorded clause.

Unrestricted backtracking naturally appears as a generalization of random backtrack-

ing. Unrestricted backtracking differs from the traditional forms of backtracking, namely

chronological and non-chronological backtracking, to the extend that the search can back-

track to any point in the search tree. Clearly, random backtracking is a particular case of

unrestricted backtracking.

SAT algorithms including unrestricted backtracking are no longer guaranteed to find a

solution. In other words, unrestricted forms of backtrack are incomplete, which motivates

defining new strategies for guaranteeing completeness in this context. The new strategies

are based either on marking recorded clauses as non-deletable or on increasing a given

constraint in between applications of different backtracking schemes.

Experimental results indicate that significant savings in the search effort can be ob-

tained for different organizations of the proposed unrestricted backtrack search algorithm.

106

6

Hidden Structure
in Unsatisfiable Random 3-SAT

The utilization of SAT in practical applications has motivated work on certifying SAT

solvers (e.g. see (McMillan 2003)). Given a problem instance, the certifier needs to be able

to verify that the computed truth assignment indeed satisfies a satisfiable instance and

that, for an unsatisfiable instance, a proof of unsatisfiability can be generated. Certifying

a SAT solver for a satisfiable instance is by far easier. Given a truth assignment for a

problem instance, the certifier checks whether after setting the assignments all clauses are

satisfied. Certifying a SAT solver for an unsatisfiable instance is hard. For an unsatisfiable

instance, one has to be able to explain why the instance cannot be satisfied. For instance,

one may provide a resolution proof based on an unsatisfiable core (Bruni & Sassano 2001;

Zhang & Malik 2003) or a strong backdoor (Williams, Gomes, & Selman 2003). Broadly,

an unsatisfiable core is a sub-formula that is still unsatisfiable and a strong backdoor is a

subset of variables which define a search subspace that suffices to prove unsatisfiability.

The main goal of this chapter is to make an empirical study on hidden structure in

typical case complexity. This work was motivated by the following questions: Is there

any relation between the certificate given by a SAT solver and search complexity? It is

quite intuitive that for a satisfiable instance there is a relation between hardness and the

number of solutions (Selman, Mitchell, & Levesque 1996), although other factors may

also play an important role, e.g. the size of minimal unsolvable subproblems (Mammen &

107

Hogg 1997). Is it also possible to relate a proof of unsatisfiability with search complexity?

How does the size of unsatisfiable cores and strong backdoors relate with the hardness of

unsatisfiable instances?

To answer these questions, we studied the behavior of random 3-SAT instances. Ran-

dom 3-SAT is a well-know NP-complete problem (Cook 1971). Random k-SAT for-

mulas are also well-know for exhibiting a phase transition when the ratio of clauses

to variables is compared with the search effort (Cheeseman, Kanefsky, & Taylor 1991;

Coarfa et al. 2003; Selman, Mitchell, & Levesque 1996). The experimental results

given in this chapter aim to relate the size of unsatisfiable cores and strong backdoors

with the search effort required to solve random 3-SAT unsatisfiable instances. Ob-

serve that theoretical work has already been developed in the past (Beame et al. 2002;

Chvtal & Szemerédi 1988), but our focus is to make an empirical study.

Empirical results have first been obtained using the most recent version of zChaff, avail-

able from http://ee.princeton.edu/∼chaff/zchaff.php. zChaff is the only available

solver to integrate extraction of unsatisfiable cores (Zhang & Malik 2003). However, this

algorithm has the drawback of giving approximate results, meaning that there is no guar-

antee about the unsatisfiable core having the smallest number of clauses. Hence, one may

doubt of the accuracy of results, i.e. one may argue that more accurate results would lead

to different conclusions. Consequently, we have developed a new model and algorithm

that can be used to obtain the smallest size unsatisfiable cores and strong backdoors.

Results for the new algorithm confirm the conclusions obtained by using zChaff.

This chapter is organized as follows. In the next section we characterize random 3-

SAT instances, followed by the definitions of unsatisfiable cores and strong backdoors.

In Section 6.4 we give experimental data obtained by running zChaff on random 3-SAT

instances. Section 6.5 relates hardness with hidden structure, allowing us to conclude that

hard unsatisfiable instances are hard because of the size of unsatisfiable cores and strong

backdoors. Afterwards, we introduce a new model and algorithm for computing smallest

size unsatisfiable cores and strong backdoors. Additional results for the new algorithm

confirm the conclusions previously obtained.

108

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8P
ro

ba
bi

lit
y

of
 b

ei
ng

 u
ns

at
is

fia
bl

e

Ratio of clauses-to-variables

n=50
n=100
n=150

Figure 6.1: Probability of unsatisfiability of random 3-SAT formulas with 50, 100 and 150 variables,
as a function of the ratio of clauses to variables

6.1 Random 3-SAT

Random 3-SAT instances are obtained by randomly generating clauses with length 3.

For an instance with n variables and m clauses, each literal of the m clauses is randomly

selected from the 2n possible literals such that each literal is selected with the same

probability of 1/2n. Clauses with repeated literals or with a literal and its negation

(tautological clauses) are discarded.

Random k-SAT formulas are particularly interesting due to the occurrence of a phase-

transition or threshold phenomenon, i.e. a rapid change in complexity when increasing (or

decreasing) the ratio of clauses to variables (Crawford & Auton 1993; Selman, Mitchell, &

Levesque 1996). For a small ratio, almost all formulas are under-constrained and therefore

satisfiable. As the value of m/n increases, almost all instances are over-constrained and

therefore unsatisfiable. Experiments strongly suggest that for random 3-SAT there is

a threshold at a critical ratio of clauses to variables m/n ≈ 4.3 such that beyond this

value the probability of generating a satisfiable instance drops to almost zero. (Also,

a complexity peak also occurs around 4.3.) This behavior is illustrated in Figure 6.1.

Experimental data is given for the probability of satisfiability of random 3-SAT formulas

with 50, 100 and 150 variables, as a function of the ratio of clauses to variables. Each

point corresponds to the median value of 500 random 3-SAT instances.

109

Algorithm 6.1: Computing an unsatisfiable core

Compute Unsat Core(ClauseStack St)

(1) while St is not empty

(2) Clause C = pop clause(St)

(3) if C is not marked

(4) continue

(5) ClauseSet CS = get reasons for recording clause(C)

(6) mark clause set(CS)

6.2 Unsatisfiable Cores

Research on unsatisfiable cores can be distinguished between theoretical and experi-

mental work. In the theoretical field, unsatisfiable cores complexity has been analyzed

and formal algorithms have been proposed (Aharoni & Linial 1986; Beame et al. 2002;

Büning 2000; Chvtal & Szemerédi 1988; Davydov, Davydova, & Büning 1998; Fleischner,

Kullmann, & Szeider 2002; Papadimitriou & Wolfe 1988). Experimental work includes

contributions of Bruni and Sassano (Bruni & Sassano 2001) and Zhang and Malik (Zhang

& Malik 2003). Both approaches extract unsatisfiable cores. The first approach proposes

an adaptive search guided by clauses hardness. The second approach is motivated by

considering that a CNF formula is unsatisfiable if and only if is possible to generate an

empty clause by resolution from the original clauses. In this case, the resolution steps are

emulated by the creation of nogoods. The unsatisfiable core is given by the set of original

clauses involved in the derivation of the empty clause.

Algorithm 6.1 presents the pseudo-code for the algorithm proposed in (Zhang & Malik

2003). In this algorithm, ClauseStack St represents a stack with the recorded clauses,

ordered by creation time (the clause on the top is the most recently recorded clause). Also,

it is necessary to consider a marking scheme for the clauses. Initially, only the clauses

involved in deriving the empty clause are marked. At the end, the marked original clauses

correspond to the unsatisfiable core. For each iteration in the algorithm, a new set of

clauses is marked (mark clause set). In addition, the algorithm keeps a file with all the

reasons for creating each recorded clause, i.e. with all the clauses involved in the resolution

steps utilized for creating a recorded clause. This file is updated during the search for

110

each new recorded clause. For computing the unsatisfiable core, a breath-first traversal

over the file is used, allowing to traverse the marked recorded clauses (obtained with

get reasons for recording clause(C)) in the order as they appear in the clause

stack.

Definition 6.1 (Unsatisfiable Core) Given a formula ϕ, UC is an unsatisfiable core

for ϕ iff UC is a formula s.t. UC is unsatisfiable and UC ⊆ ϕ.

Observe that an unsatisfiable core can be defined as any subset of the original formula

that is unsatisfiable. Consequently, there may exist many different unsatisfiable cores,

with a different number of clauses, for the same problem instance, such that some of

these cores can be subsets of others. Also, and in the worst case, the unsatisfiable core

corresponds exactly to the set of original clauses.

Definition 6.2 (Minimal Unsatisfiable Core) An unsatisfiable core UC for ϕ is a

minimal unsatisfiable core iff removing any clause ω ∈ UC from UC implies that UC

−{ω} is satisfiable.

Definition 6.3 (Minimum Unsatisfiable Core) An unsatisfiable core UC for ϕ is a

minimum unsatisfiable core iff it is a minimal unsatisfiable core of minimum cardinality.

Example 6.1 Consider the following formula ϕ having the following clauses:

ω1 = (x1 ∨ ¬x3) ω3 = (¬x2 ∨ x3) ω5 = (x2 ∨ x3)

ω2 = (x2) ω4 = (¬x2 ∨ ¬x3) ω6 = (¬x1 ∨ x2 ∨ ¬x3)

Given these clauses, the following unsatisfiable cores can be identified:

UC1 = {ω1, ω2, ω3, ω4, ω5, ω6} UC4 = {ω1, ω3, ω4, ω5, ω6} UC7 = {ω2, ω3, ω4, ω5}

UC2 = {ω1, ω2, ω3, ω4, ω5} UC5 = {ω2, ω3, ω4, ω5, ω6} UC8 = {ω2, ω3, ω4, ω6}

UC3 = {ω1, ω2, ω3, ω4, ω6} UC6 = {ω1, ω2, ω3, ω4} UC9 = {ω2, ω3, ω4}

From the unsatisfiable cores given above, UC4 and UC9 are minimal unsatisfiable cores,

but only UC9 is a minimum unsatisfiable core.

Interestingly, the existing experimental work described above (Bruni & Sassano 2001;

Zhang & Malik 2003) has very little concern regarding extraction of minimal unsatisfiable

111

cores. Nonetheless, the work in (Zhang & Malik 2003) proposes an iterative solution for

reducing an unsatisfiable core, by iteratively invoking the SAT solver on each computed

sub-formula. This solution, albeit capable of reducing the size of computed unsatisfiable

cores, does not provide any guarantees regarding the unsatisfiable core being either min-

imal or minimum. However, in some practical applications it may be useful identifying

the minimum unsatisfiable core of a given problem instance, i.e. the smallest number

of clauses that make the instance unsatisfiable. We should note that in some cases the

size of a minimal unsatisfiable core may be much larger than the size of the minimum

unsatisfiable core.

6.3 Strong Backdoors

The notion of backdoor was introduced by Williams, Gomes and Selman in (Williams,

Gomes, & Selman 2003). Research on backdoors was motivated by the heavy-tailed

phenomenon in backtrack search algorithms (Gomes et al. 2000). A backdoor is a special

subset of variables that characterizes hidden structure in problem instances.

Backdoor definition depends on a sort of algorithm called sub-solver. A sub-solver S

always runs in polynomial time. For example, S could be a solver that is able to solve 2-

SAT instances but rejects k-SAT instances, with k ≥ 3. Given a partial truth assignment

A′
X : X ′ ⊆ X → {true, false}, a sub-solver S is able to solve the formula ϕ[A′

X] in

polynomial time.

Definition 6.4 (Backdoor) A nonempty subset Y of the variables set X is a backdoor

for ϕ w.r.t. S iff for some partial truth assignment AY : Y → {true, false}, S returns a

satisfying assignment of ϕ[AY].

Clearly, the definition of backdoor given above only applies to satisfiable formulas.

Moreover, observe that there may exist many backdoor sets for a given formula. In the

worst case, there is only one backdoor that corresponds exactly to the set of all variables.

Consequently, it may be interesting to identify minimum and minimal backdoors.

112

Definition 6.5 (Minimal Backdoor) A nonempty backdoor set Y for ϕ w.r.t. S is a

minimal backdoor iff removing any variable v ∈ Y from Y implies that Y − {v} is not a

backdoor set.

Definition 6.6 (Minimum Backdoor) A nonempty backdoor set Y for ϕ w.r.t. S is

a minimum backdoor iff it is a minimal backdoor of minimum cardinality.

Since the definition of backdoor given above only considers satisfiable instances, the

work of Williams et al. also introduced the definition of strong backdoor for unsatisfiable

instances. This definition holds for both satisfiable and unsatisfiable instances.

Definition 6.7 (Strong Backdoor) A nonempty subset Y of the variables set X is a

strong backdoor for ϕ w.r.t. S iff for all AY : Y → {true, false}, S returns a satisfying

assignment for ϕ[AY] or concludes unsatisfiability of ϕ[AY].

The definition of strong backdoor contrasts with the definition of backdoor to the

extent that for a strong backdoor Y no truth assignment is specified. This means that

all possible assignments of Y have to be considered. Moreover, minimum and minimal

strong backdoors can be defined similarly to minimum and minimal backdoors.

6.4 zChaff on Random 3-SAT

In this section we analyze zChaff’s results on random 3-SAT instances.

zChaff (Moskewicz et al. 2001) is an efficient DLL-based SAT solver enhanced with clause

recording (Marques-Silva & Sakallah 1996). We used zChaff for being a state-of-the-art

SAT solver integrating the extraction of unsatisfiable cores. Clearly, solving different

sub-formulas with any complete solver would also allow us to extract unsatisfiable cores,

although not so efficiently.

Overall, zChaff’s behavior on solving 3-SAT instances is similar to the behavior re-

ported in the literature for a DLL solver (e.g. see (Selman, Mitchell, & Levesque 1996)).

Hence, one may conclude that for random instances clause learning is not particularly rel-

evant. This conclusion corresponds indeed to practice: clause learning is very useful for

113

 0
 25
 50

 2 3 4 5 6 7 8

Ratio clauses-to-variables

 1000

 2000

 3000

 4000

N
um

be
r

of
 n

od
es

 &
 c

on
fli

ct
s

Nodes n=50
Conflicts n=50

Nds n=100
Cfs n=100
Nds n=150
Cfs n=150

Figure 6.2: Number of nodes and conflicts when using zChaff for solving random 3-SAT formulas
with 50, 100 and 150 variables, as a function of the ratio of clauses to variables

structured instances that usually come from real-world domains, rather than for random

instances.

Figure 6.2 gives experimental results for the number of nodes and conflicts when using

zChaff for solving random 3-SAT formulas with 50, 100 and 150 variables, as a function

of the ratio clauses/variables. Observe that two different scales are used for the plot;

otherwise values for 50 variables would not be legible.

By analyzing Figure 6.2, the following conclusions can be drawn:

1. As a whole, there is a correspondence between the number of nodes and the number of

conflicts. This means that the more we search, the more conflicts we find. However,

there is an exception: when the ratio clauses/variables is reduced. In these cases,

there are so few constraints that is trivial to find a solution for them and consequently

the number of conflicts is negligible. On the other hand, the number of nodes almost

equals the number of variables due to the lack of implications.

2. The graph exhibits a similar shape independently of the number of variables, al-

though as the number of variables increases, the steeper are the curves.

114

 0

 200

 400

 600

 800

 1000

 1200

 2 3 4 5 6 7 8

N
um

be
r

of
 n

od
es

Ratio clauses-to-variables

Nodes Sat
Nodes Unsat

Composite Nodes

Figure 6.3: Number of nodes when using zChaff for solving satisfiable and unsatisfiable random
3-SAT formulas with 100 variables as a function of the ratio of clauses to variables

3. The maximum value for the number of nodes and conflicts can be observed when the

ratio of clauses/variables is ≈ 4.3. Recall that this value corresponds to the ratio of

clauses to variables where the probability of generating a satisfiable instance equals

the probability of generating an unsatisfiable instance.

Figure 6.3 gives the number of nodes when using zChaff for solving satisfiable and un-

satisfiable random 3-SAT formulas with 100 variables as a function of the ratio of clauses

to variables. Observe that similar results have been obtained in the past with a DLL

solver (Cheeseman, Kanefsky, & Taylor 1991; Selman, Mitchell, & Levesque 1996). More-

over, the graph would exhibit a similar shape independently of the number of variables,

although as the number of variables increases the steeper are the curves. Overall, the

maximum value for the number of nodes is observed when the ratio of clauses/variables

is ≈ 4.3.

The main conclusion is essentially that satisfiable and unsatisfiable sets are quite dif-

ferent when comparing the number of nodes. Most satisfiable instances are very easy to

solve. Satisfiable instances with a higher ratio clauses/variables are slightly more difficult

115

 0
 75

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Ratio clauses-to-variables

 2500

 5000

 7500

 10000

 12500

 15000

N
um

be
r

of
 n

od
es

n=50
n=100
n=150

Figure 6.4: Number of nodes when using zChaff for solving unsatisfiable random 3-SAT formulas
with 50, 100 and 150 variables, as a function of the ratio of clauses to variables

to solve. Unsatisfiable instances with a small ratio clauses/variables are the most difficult

to solve. Also, unsatisfiable instances with a larger ratio are still hard.

Figure 6.4 is a plot for the number of nodes of all unsatisfiable instances with 50, 100

and 150 clauses. Once again, we should note that two different scales are used in order to

clarify results for 50 variables. Clearly, the same trends are observed for all the instances,

i.e. the number of variables does not affect the general trend: unsatisfiable instances with

a small ratio of clauses to variables are much harder than unsatisfiable instances with a

larger ratio.

6.5 Hardness and Hidden Structure

Early studies on complexity relate hardness of k-SAT instances with the ratio of the

number of clauses to the number of variables (Cheeseman, Kanefsky, & Taylor 1991;

Crawford & Auton 1993; Gent & Walsh 1996; Selman, Mitchell, & Levesque 1996). More-

over, hardness has often been related with the hidden structure of satisfiable instances.

For example, in (Selman, Mitchell, & Levesque 1996) hardness is regarded as a function

of the number of solutions. Moreover, recent work relates backdoors with hardness of sat-

isfiable instances, based on the concept of key backdoors (Ruan, Kautz, & Horvitz 2004).

116

Theoretical work has already related hardness and hidden structure (Beame et al. 2002;

Chvtal & Szemerédi 1988). However, little effort has ever been made in order to empiri-

cally relate these two aspects. Interestingly, recent empirical work on unsatisfiable cores

and strong backdoors has brought some new insights on the topic.

Our first intuition was that hardness and the size of unsatisfiable cores and strong

backdoors would be related due to the following reasons:

• Unsatisfiability is proved when the search space is exhausted. For a DLL solver

with an accurate heuristic, the search space can be reduced to 2b, where b is the

size of the minimum strong backdoor. Also, for a solver with clause recording, the

number of steps required to derive the empty clause can be related with the size

of the unsatisfiable core. Although a recorded clause may include more than one

resolution step, problem instances with small unsatisfiable cores should require less

resolution steps to be solved.

• The probability of generating satisfiable instances exhibits a phase-transition (see

Figure 6.1), i.e. at a certain value of the ratio of clauses to variables the probability

of generating satisfiable instances quickly decreases to 0% as we add clauses to the

formula. Conversely, the probability of generating unsatisfiable instances quickly

increases to 100% at a certain value of the ratio of clauses to variables. Hence,

unsatisfiable instances with a ratio of clauses to variables m/n above ≈ 4.3, where

the probability of generating a satisfiable/unsatisfiable instance is about 50%, are

probably unsatisfiable with less than m clauses.

For example, let us consider the generation of a typical unsatisfiable formula ϕ with

n variables and m clauses, where m/n > 4.3. Consider that formula ϕ has a set

of clauses Ω = {ω1, ..., ωp, ..., ωm}. Suppose that ϕ is built by adding clauses in Ω

one at a time. Moreover, with clauses {ω1..ωp−1} (p ≈ m − 4.3n) the formula is

satisfiable but with all the clauses {ω1..ωp} the formula is unsatisfiable. Thus the

minimum unsatisfiable core size is ≤ p. Furthermore, adding clauses {ωp+1, ..., ωm}

to the formula may only reduce the size of the minimum unsatisfiable core.

117

 0

 20

 40

 60

 80

 100

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

%
 o

f c
la

us
es

/v
ar

ia
bl

es
 in

 c
or

es
/b

ac
kd

oo
rs

Ratio clauses-to-variables

Cores n=50
Backdoors n=50

Cores n=100
Backdoors n=100

Cores n=150
Backdoors n=150

Figure 6.5: Size of unsatisfiable cores and strong backdoors (%) for unsatisfiable random 3-SAT
formulas with 50, 100 and 150 variables, as a function of the ratio of clauses to variables

Clearly, the same reasoning can be applied to strong backdoors. This allows us to

conclude that unsatisfiable cores and strong backdoors sizes are related, to the extent

that both sizes decrease with the increasing of the ratio of the number of clauses to

variables.

Figure 6.5 shows the evolution on the size of unsatisfiable cores and strong backdoors.

More precisely, results indicate the percentage of clauses in the unsatisfiable cores with

respect to the total number of clauses and the percentage of variables in the strong

backdoors with respect to the total number of variables. Results are given for random

unsatisfiable 3-SAT formulas with 50, 100 and 150 variables, as a function of the ratio of

the number of clauses to variables.

The size of unsatisfiable cores has been computed by zChaff. The size of strong back-

doors has been obtained from the corresponding unsatisfiable cores: for each instance,

all variables in the clauses of the unsatisfiable core have been considered to be part of

the strong backdoor. This means that each strong backdoor Y for a formula ϕ has been

defined w.r.t. a sub-solver S that for all assignments AY : Y → {true, false} simply

checks that at least one clause is unsatisfied and consequently concludes unsatisfiability

118

of ϕ[AY].

With respect to the size of unsatisfiable cores, results in Figure 6.5 clearly confirm our

intuition. Observe that the reduction in the size of unsatisfiable cores is not only due to

the increasing number of clauses with the increasing ratio of clauses to variables. Indeed,

the absolute value for the size of unsatisfiable cores also decreases as a function of the

ratio clauses/variables. Hence, one may conclude that harder instances have unsatisfiable

cores larger than easier instances with a higher ratio of clauses to variables.

In addition, the relation between hardness and strong backdoors size is also suggested,

although not so clearly. One may argue that the sub-solver S involved in the extraction

of the strong backdoor does not favor getting a small strong backdoor. (Using different

sub-solvers is a topic for future research work.) Also, one may argue that the size of the

obtained strong backdoors is much larger than the size of minimum or even minimal strong

backdoors. For this reason, in the next section we address an algorithm for extracting

minimal and minimum sizes unsatisfiable cores and strong backdoors.

Figures 6.6, 6.7 and 6.8 also emphasize the correlation between hardness (given by the

number of nodes searched by zChaff) and the number of clauses in the unsatisfiable cores,

between hardness and the number of variables in the backdoors, and also between the

number of clauses in the unsatisfiable cores and the the number of variables in the back-

doors, respectively. For Figures 6.6 and 6.7, the regression was done using an exponential

function, whereas for Figure 6.8 a polynomial of second order was used. The correlation

is more clear in Figures 6.6 and 6.8 than in Figure 6.7, probably due to the reasons we

have pointed in the previous paragraph. Figure 6.8 also reflects the plot obtained in Fig-

ure 6.7, again suggesting that using another sub-solver S may allow us to draw stronger

conclusions.

6.6 Improving Results Accuracy

The previous plots exhibit a clear trend towards relating hardness with the size of

unsatisfiable cores and strong backdoors. However, one may strengthen the obtained

119

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 250 300 350 400 450 500 550 600 650 700

#S
ea

rc
he

d
N

od
es

#Clauses in Unsatisfiable Core

Figure 6.6: Regression on hardness and the number of clauses in the unsatisfiable cores for unsat-
isfiable random 3-SAT formulas with 150 variables

conclusions with more accurate results. In this section, we provide a model for identifying

minimum and minimal unsatisfiable cores and strong backdoors. Experimental results

with the new algorithm confirm the conclusions established in the previous section.

Let us start by introducing our model for extracting minimum unsatisfiable cores. First

of all, it is clear that we can use a brute-force algorithm for exploring the whole search

space while keeping track of the minimum unsatisfiable core. But we can do significantly

better: we can emulate hiding each one of the clauses in order to perform the search in

all possible subsets of clauses. Also, we can learn from the conflicts.

We assume that each formula ϕ is defined over n variables, X = {x1, . . . , xn}, and

m clauses, Ω = {ω1, . . . , ωm}. We start by defining a set S of m new variables, S =

{s1, . . . , sm}, and then create a new formula ϕ′ defined on n + m variables, X ∪ S, and

with m clauses, Ω′ = {ω′
1, ..., ω

′
m}. Each clause ω′

i ∈ ϕ′ is defined from a corresponding

clause ωi ∈ ϕ and from a variable si s.t. ω′
i = {¬si} ∪ ωi.

Example 6.2 Consider the CNF formula ϕ having the variables X = {x1, x2, x3} and

the clauses Ω = {ω1, ..., ω6}:

120

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 125 130 135 140 145 150

#S
ea

rc
he

d
N

od
es

#Variables in Backdoors

Figure 6.7: Regression on hardness and the number of variables in the backdoors for unsatisfiable
random 3-SAT formulas with 150 variables

ω1 = (x1 ∨ ¬x3) ω4 = (¬x2 ∨ ¬x3)

ω2 = (x2) ω5 = (x2 ∨ x3)

ω3 = (¬x2 ∨ x3) ω6 = (¬x1 ∨ x2 ∨ ¬x3)

Given formula ϕ, the new formula ϕ′ is defined on variables X ∪ S = {x1, x2, x3, s1,

..., s6} and clauses Ω′ = {ω′
1, ..., ω′

6}, such that:

ω′
1 = (¬s1 ∨ x1 ∨ ¬x3) ω′

4 = (¬s4 ∨ ¬x2 ∨ ¬x3)

ω′
2 = (¬s2 ∨ x2) ω′

5 = (¬s5 ∨ x2 ∨ x3)

ω′
3 = (¬s3 ∨ ¬x2 ∨ x3) ω′

6 = (¬s6 ∨ ¬x1 ∨ x2 ∨ ¬x3)

Observe that S variables can be interpreted as clause selectors which allow considering

or not each clause ωi. For example, assigning s2 = 0 makes clause ω′
2 satisfied and

therefore variable x2 does not have to be assigned value 1, as it was for the original clause

ω2 = (x2). Moreover, ϕ′ is readily satisfiable by setting all si variables to 0. Now, for each

assignment to the S variables, the resulting sub-formula may be satisfiable or unsatisfiable.

For each unsatisfiable sub-formula, the number of S variables assigned value 1 indicates

how many clauses are contained in the unsatisfiable core. Observe that this unsatisfiable

core may further be reduced if we restrict the core to clauses involved in the derivation

121

 120

 125

 130

 135

 140

 145

 150

 155

 250 300 350 400 450 500 550 600 650 700

#V
ar

ia
bl

es
 in

 B
ac

kd
oo

r

#Clauses in Unsatisfiable Core

Figure 6.8: Regression on the number of clauses in the unsatisfiable cores and the number of
variables in the backdoors for unsatisfiable random 3-SAT formulas with 150 variables

of the empty clause. The minimum unsatisfiable core is obtained from the unsatisfiable

sub-formula with the least number of S variables assigned value 1.

One can adapt a state-of-the-art SAT solver to implement the proposed model. The

problem instance variables are organized into two disjoint sets: the S variables and the X

variables. Decisions are first made on the S variables (defining the S space) and afterwards

on the X variables (defining the X space); hence, each assignment to the S variables

defines a potential core. If for a given assignment all clauses become satisfied, then the

search simply backtracks to the most recently S variable assigned value 0. Otherwise,

each time the search backtracks from a decision level associated with an X variable to

a decision level associated with a S variable, we have identified an unsatisfiable core,

defined by the S variables assigned value 1. After all assignments to the S variables have

been (implicitly) evaluated, the unsatisfiable core with the least number of utilized clauses

corresponds to the minimum unsatisfiable core.

The key challenge of the proposed model is the search space. For the original problem

instance the search space is 2n, where n is the number of variables, whereas for the

transformed problem instance the search space becomes 2n+m, where m is the number

122

of clauses. Nevertheless, a few key optimizations can be applied. First, the SAT-based

algorithm can start with an upper bound on the size of the minimum unsatisfiable core.

For this purpose, the algorithm proposed in (Zhang & Malik 2003) can be used. Hence,

when searching for the minimum unsatisfiable core, we just need to consider assignments

to the S variables which yield smaller unsatisfiable cores. This additional constraint

can be modeled as a cardinality constraint. Furthermore, each computed unsatisfiable

core can be used for backtracking non-chronologically on the S variables, thus potentially

reducing the search space. Observe that an unsatisfiable core is computed whenever the

search backtracks from the X space to the S space, meaning that there is no solution to

the formula given the current S assignments, i.e. the original formula ϕ was proved to be

unsatisfiable.

As usual, clause recording is used to reduce the search space. Interestingly, after a

conflict that implies recording a clause that allows backtracking from the X space to the

S space, an unsatisfiable core can be easily obtained from the new recorded clause.

Example 6.3 Given formula ϕ′ from Example 6.2, recording clause ω′
7 = (¬s2∨¬s3∨¬s4)

means that the unsatisfiable core {ω2, ω3, ω4} has been identified.

Besides the traditional clause recording scheme (Marques-Silva & Sakallah 1996), where

each new clause corresponds to a sequence of resolution steps, a new clause is recorded

whenever a solution is found. The new clause contains all the S literals responsible for

not selecting the corresponding clause 1, except for those clauses that would be satisfied

by the X variables in the computed solution.

Example 6.4 Consider again formula ϕ′ from Example 6.2, and suppose that the current

set of assignments is {s1=0, s2=0, s3=1, s4=1, s5=0, s6=1, x1=1, x2=0, x3=0}. At

this stage of the search, all the clauses are satisfied, and therefore a solution is found.

Consequently, a new clause is recorded to avoid finding again the same solution and also

to force finding an unsatisfiable core in the future. For this example, a new clause ω ′
8 =

(s2 ∨ s5) is recorded. Observe that clause ω′
1 is satisfied by assigning x1 = 1. The new

1Such S literals are assigned value 1 in a clause that is part of the original specification.

123

clause means that for finding an unsatisfiable core either clause ω2 or clause ω5 has to be

part of the formula.

Finally, observe that minimal unsatisfiable cores can also be obtained by this algorithm

as long as the solver is given any unsatisfiable sub-formula instead of the whole formula.

A similar algorithm can be used to obtain a minimum strong backdoor. Again, the

idea is to extract a strong backdoor from the corresponding unsatisfiable core. Besides

having additional variables for selecting clauses, we also need a set T of new variables

to be used as selectors for variables in the original formula. (Satisfying variable ti ∈ T

implies variable xi being part of a strong backdoor.) For each variable xi a new constraint

is added,

ti ↔
∨

s∈Si

s

where Si is the subset of S variables occurring in clauses with xi or ¬xi. The minimum

strong backdoor is obtained from the unsatisfiable sub-formula with the least number of T

variables assigned value 1. With these additional constraints, we guarantee that a variable

xi is part of a strong backdoor iff a clause with xi or ¬xi is part of a given unsatisfiable

core.

Example 6.5 Given formula ϕ′ from Example 6.2, the CNF clauses to be added w.r.t.

variable x1 would be the following:

(¬t1 ∨ s1 ∨ s6) (¬s1 ∨ t1) (¬s6 ∨ t1)

The proposed algorithm is able to identify minimum or minimal strong backdoors,

depending on the input being either the original formula or an unsatisfiable sub-formula.

A key optimization consists in using the size of the smallest strong backdoor extracted so

far as a cardinality constraint.

The plot in Figure 6.9 gives the size of minimal unsatisfiable cores and strong back-

doors as a percentage of clauses and variables in the formula, respectively. Results are

restricted to the minimal - and not minimum - unsatisfiable cores and strong backdoors

for unsatisfiable random 3-SAT formulas with only 50 variables due to the complexity of

124

 0

 20

 40

 60

 80

 100

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

%
 o

f c
la

us
es

/v
ar

ia
bl

es
 in

 c
or

es
/b

ac
kd

oo
rs

Ratio clauses-to-variables

Minimal Cores
Lazy Cores

Minimal Strong Backdoors
Lazy Strong Backdoors

Figure 6.9: Size of minimal unsatisfiable cores and strong backdoors (%) for unsatisfiable random
3-SAT formulas with 50 variables, as a function of the ratio of clauses to variables

this optimization problem. However, we predict that similar figures would be obtained

for minimum values and for instances with more variables.

Interesting conclusions may be drawn from Figure 6.9. First of all, it is clear that

the values obtained by a lazy approach do not correspond to minimal values. Second,

it is possible to relate the values for the lazy approach with the minimal values by an

almost constant gap. Finally, this plot confirms that hardness can be related with hidden

structure, i.e. hard unsatisfiable random 3-SAT formulas exhibit larger unsatisfiable cores

and strong backdoors.

Nonetheless, the relation between hardness and strong backdoors is still not as clear

as the relation between hardness and unsatisfiable cores. But we believe that there is an

explanation for this: the sub-solver used on the definition of these strong backdoors if far

from giving small backdoors. If we consider a sub-solver with unit propagation, then the

implications between assignments have to be taken into account, and consequently the

number of variables in the strong backdoor is probably reduced. Moreover, for formulas

with a larger number of clauses, the number of implications is expected to be larger.

Hence, one may expect the size of strong backdoors for formulas with a larger ratio of

125

clauses to variables to be more reduced than the size of strong backdoors for formulas

with a small ratio of clauses to variables.

6.7 Summary

Recent advances in propositional satisfiability include studying the hidden structure

of a formula, e.g. backbones (Monasson et al. 1999) and small worlds (Walsh 1999).

Moreover, studying the hidden structure of unsatisfiable formulas aims to explain why a

given formula is unsatisfiable. Two empirical successful approaches have recently been

proposed: extracting unsatisfiable cores and identifying strong backdoors. An unsatis-

fiable core is a subset of clauses that defines a sub-formula that is also unsatisfiable,

whereas a strong backdoor defines a subset of variables which assigned with all values

allow concluding that the formula is unsatisfiable.

The contribution of this chapter is two-fold.

First, we study the relation between the search complexity of unsatisfiable random 3-

SAT formulas and the sizes of unsatisfiable cores and strong backdoors. For this purpose,

we use an existing algorithm which uses an approximated approach for calculating these

values. Experimental results indicate that the search complexity of unsatisfiable random 3-

SAT formulas is related with the size of unsatisfiable cores and strong backdoors. However,

this algorithm uses a lazy approach which means that the size of the extracted unsatisfiable

cores and strong backdoors can be far from being minimum or even minimal.

Second, we introduce a new algorithm that optimally reduces the size of unsatisfiable

cores and strong backdoors, thus giving more accurate results. Results obtained with this

more accurate approach also suggest that hardness is related with the size of unsatisfiable

cores and strong backdoors. Nonetheless, and similarly to the first approach, the relation

between hardness and the size of strong backdoors is not as clear as the relation between

hardness and the size of unsatisfiable cores. This is probably due to the sub-solver that

is being used for extracting strong backdoors. Future research work should definitely

consider more accurate sub-solvers with the aim of reducing the size of strong backdoors.

126

7

Conclusions and Future Work

The last few years have seen enormous progress in research on satisfiability. In 1997, a

very well-known paper presented ten challenges in propositional reasoning and search (Sel-

man, Kautz, & McAllester 1997). By the time, these challenges appeared as quite ambi-

tious. During the next years, the improvements in satisfiability were remarkable. Hence,

in 2003 two of the authors revisited these challenges, reviewed progress and offered some

suggestions for future research (Kautz & Selman 2003).

Despite the worst-case exponential run time of all known algorithms, SAT solvers are

now routinely used to solve different benchmark problems. Systematic methods can now

easily solve real-world problems with thousands or tens of thousands of variables, while

local search methods are known for solving satisfiable random 3-SAT problems with a

thousand variables.

Progress in the performance of SAT solvers is often mentioned as the most remarkable

progress in the area of SAT. However, we believe that SAT evolved as a whole, and

so the progress of SAT solvers is simply part of that evolution. Clearly, it is easier to

measure the advances in the performance of SAT solvers, rather than advances in the

theoretical foundations. For example, the SAT competitions that have been run on the

last years provide a clear picture on the evolution of SAT solvers. From one year to

another, many instances that were not solved in one competition become easily solved in

the next competition.

127

The contributions of our thesis allow a better understanding of the efficient implemen-

tation of SAT solvers, the structure of SAT problem instances and the organization of SAT

algorithms. This dissertation describes four main contributions, which are summarized

on the next paragraphs.

The first contribution corresponds to efficient implementations for backtrack search

SAT solvers. State-of-the-art SAT solvers are very competitive, not only due to integrat-

ing sophisticated techniques and algorithms, but also for being carefully implemented.

Observe that a negligible reduction in the time per decision can make the difference be-

tween solving or not solving a given problem instance in a reasonable amount of time.

Efficient implementations for backtrack search SAT solvers with clause recording are based

on lazy data structures. These data structures are lazy due to not allowing to know pre-

cisely the number of literals in a clause which are assigned value 0, assigned value 1 or

not assigned. Nonetheless, unit and unsatisfied clause are always identified, meaning that

unit propagation is always applied and conflicts are always identified, respectively.

Probing-based preprocessing formula manipulation techniques are also described in

this dissertation. Probing allows establishing different scenarios by assigning both val-

ues to a variable and then applying unit propagation. Clearly, probing is an expensive

technique, and therefore we decided to restrict probing to preprocessing in a first phase.

Preprocessing techniques are expected to simplify ¡the formula, namely by reducing the

number of variables and clauses, or by adding important clauses, thus reducing the search

effort required to find a solution or prove unsatisfiability. Different preprocessing formula

manipulation techniques can be applied based on the result of probing. Furthermore,

probing provides a unified framework for applying well-know preprocessing techniques

and also new preprocessing techniques.

Another contribution is unrestricted backtracking for satisfiability. Unrestricted back-

tracking allows to backtrack without restrictions in the search tree whenever a conflict is

found. The idea is to give more freedom to the search, thus avoiding the characteristic

trashing of backtrack search algorithms. Such an algorithm combines the advantages of

local search with the advantages of systematic search. Unrestricted backtrack algorithms

128

are incomplete, due to not backtracking to the most recent yet untoggled variable in the

just recorded clause. Nonetheless, different conditions can be established for guaranteeing

completeness, based on keeping some of the recorded clauses.

Another issue discussed in this dissertation is hidden structure in unsatisfiable random

3-SAT formulas. In this context, hidden structure is given by the size of unsatisfiable cores

and strong backdoors, which can be extracted from any unsatisfiable formula. Both con-

cepts are related, although unsatisfiable cores refer to clauses and strong backdoors refer

to variables. Broadly, an unsatisfiable core is a subset of clauses that is still unsatisfiable,

whereas a strong backdoor is a subset of variables which restrict the search to a space

where unsatisfiability is proved. Our study allows to relate hardness, i.e. the number of

searched nodes, with the size of unsatisfiable cores and strong backdoors. Moreover, we

provide an algorithm for extracting small unsatisfiable cores and strong backdoors.

This dissertation has a number of limitations. Some of them are addressed along the

dissertation. In a near future, we expect to improve some of the proposed techniques

and eliminate the already identified limitations. For example, we should consider more

powerful sub-solvers, i.e. allowing more constraint propagation, when identifying strong

backdoors.

In addition, and albeit beyond the scope of this dissertation, some of the proposed

formal results could be more thoroughly detailed, namely regarding unrestricted back-

tracking. Moreover, a more extensive and generic (see (Bhalla et al. 2003b)) experimental

evaluation might be conducted to strongly support our conclusions.

We may also point out more generic limitations. For example, the probing-based

techniques and the unrestricted backtracking algorithm are supposed to be useful for

solving instances of specific problem domains. We should consider either improving these

techniques or characterizing in more detail the classes where the techniques indeed work.

The recent progress in SAT is not a problem to the future of SAT. Conversely, progress

brings more progress: answering to an open question opens even more questions. There

are currently more open questions than there were some years ago. Also, there is much

more interest in SAT than there was some years ago. SAT is now a more competitive

129

research field with a more numerous community.

Our future work will certainly be developed in the context of SAT. We believe that

after working on SAT-core issues we are now prepared not only to continue working on

SAT but also to start working on SAT-related issues. Indeed, beyond-SAT issues seem to

be currently more promising than SAT-core issues. Clearly, SAT foundations have been

strengthened in the last years. So, having such strong and clear SAT foundations is a basis

for extending these concepts to other areas. SAT is indeed effective for solving hard real-

world problems, which has motivated encoding other problem domains as CNF formulas

to extend the use of SAT (e.g. graph coloring and scheduling problems) and extending

SAT to be used for solving other problems with more sophisticated formulations (e.g.

quantified Boolean formulas). We believe that we will be able to make contributions to

this field.

130

Bibliography

[Achlioptas et al. 2000] Achlioptas, D.; Gomes, C.; Kautz, H.; and Selman, B. 2000.

Generating satisfiable instances. In Proceedings of the National Conference on Artificial

Intelligence, 256–261.

[Aharoni & Linial 1986] Aharoni, R., and Linial, N. 1986. Minimal non two-colorable

hypergraphs and minimal unsatisfiable formulas. Journal of Combinatorial Theory,

Series A 43:196–204.

[Aspvall, Plass, & Tarjan 1979] Aspvall, B.; Plass, M. F.; and Tarjan, R. E. 1979. A

linear-time algorithm for testing the truth of certain quantified boolean formulas. In-

formation Processing Letters 8(3):121–123.

[Bacchus & Winter 2003] Bacchus, F., and Winter, J. 2003. Effective preprocessing with

hyper-resolution and equality reduction. In Sixth International Conference on Theory

and Applications of Satisfiability Testing, 183–192.

[Bacchus 2002a] Bacchus, F. 2002a. Enhancing Davis Putnam with extended binary

clause reasoning. In Proceedings of the National Conference on Artificial Intelligence.

[Bacchus 2002b] Bacchus, F. 2002b. Exploiting the computational tradeoff of more rea-

soning and less searching. In Fifth International Symposium on Theory and Applications

of Satisfiability Testing, 7–16.

[Baptista & Marques-Silva 2000] Baptista, L., and Marques-Silva, J. P. 2000. Using ran-

domization and learning to solve hard real-world instances of satisfiability. In Dechter,

131

R., ed., Proceedings of the International Conference on Principles and Practice of Con-

straint Programming, volume 1894 of Lecture Notes in Computer Science, 489–494.

Springer Verlag.

[Bayardo Jr. & Schrag 1997] Bayardo Jr., R., and Schrag, R. 1997. Using CSP look-back

techniques to solve real-world SAT instances. In Proceedings of the National Conference

on Artificial Intelligence, 203–208.

[Beame et al. 2002] Beame, P.; Karp, R.; Pitassi, T.; and Saks, M. 2002. The efficiency

of resolution and Davis-Putnam procedures. SIAM Journal on Computing 31(4):1048–

1075.

[Berre 2001] Berre, D. L. 2001. Exploiting the real power of unit propagation lookahead.

In LICS Workshop on Theory and Applications of Satisfiability Testing.

[Bhalla et al. 2003a] Bhalla, A.; Lynce, I.; de Sousa, J.; and Marques-Silva, J. 2003a.

Heuristic backtracking algorithms for SAT. In Proceedings of the International Work-

shop on Microprocessor Test and Verification.

[Bhalla et al. 2003b] Bhalla, A.; Lynce, I.; de Sousa, J.; and Marques-Silva, J. P. 2003b.

Heuristic-based backtracking for propositional satisfiability. In Proceedings of the Por-

tuguese Conference on Artificial Intelligence.

[Brafman 2001] Brafman, R. I. 2001. A simplifier for propositional formulas with many

binary clauses. In Proceedings of the International Joint Conference on Artificial Intel-

ligence.

[Bruni & Sassano 2001] Bruni, R., and Sassano, A. 2001. Restoring satisfiability or main-

taining unsatisfiability by finding small unsatisfiable subformulae. In LICS Workshop

on Theory and Applications of Satisfiability Testing.

[Büning 2000] Büning, H. K. 2000. On subclasses of minimal unsatisfiable formulas.

Discrete Applied Mathematics 107(1-3):83–98.

132

[Buro & Kleine-Büning 1992] Buro, M., and Kleine-Büning, H. 1992. Report on a SAT

competition. Technical report, University of Paderborn.

[Cheeseman, Kanefsky, & Taylor 1991] Cheeseman, P.; Kanefsky, B.; and Taylor, W. M.

1991. Where the really hard problems are. In Proceedings of the International Joint

Conference on Artificial Intelligence, 331–337.

[Chvtal & Szemerédi 1988] Chvtal, V., and Szemerédi, E. 1988. Many hard examples for

resolution. Journal of the ACM 35(4):759–768.

[Coarfa et al. 2003] Coarfa, C.; Demopoulos, D. D.; Aguire, A. S. M.; Subramanian, D.;

and Vardi, M. Y. 2003. Random 3-SAT: The plot thickens. Constraints 8(3):243–261.

[Colbourn 1984] Colbourn, C. 1984. The complexity of completing partial latin squares.

Discrete Applied Mathematics 8:25–30.

[Cook 1971] Cook, S. 1971. The complexity of theorem proving procedures. In Proceedings

of the Third Annual Symposium on Theory of Computing, 151–158.

[Coudert 1996] Coudert, O. 1996. On Solving Covering Problems. In Proceedings of the

ACM/IEEE Design Automation Conference, 197–202.

[Crawford & Auton 1993] Crawford, J. M., and Auton, L. 1993. Experimental results on

the cross-over point in satisfiability problems. In Proceedings of the National Conference

on Artificial Intelligence, 22–28.

[Davis & Putnam 1960] Davis, M., and Putnam, H. 1960. A computing procedure for

quantification theory. Journal of the Association for Computing Machinery 7:201–215.

[Davis, Logemann, & Loveland 1962] Davis, M.; Logemann, G.; and Loveland, D. 1962.

A machine program for theorem-proving. Communications of the Association for Com-

puting Machinery 5:394–397.

[Davydov, Davydova, & Büning 1998] Davydov, G.; Davydova, I.; and Büning, H. K.

1998. An efficient algorithm for the minimal unsatisfiability problem for a subclass of

CNF. Annals of Mathematics and Artificial Intelligence 23(3-4):229–245.

133

[Debruyne & Bessière 1997] Debruyne, R., and Bessière, C. 1997. Some practical filtering

techniques for the constraint satisfaction problem. In Proceedings of the International

Joint Conference on Artificial Intelligence.

[Dechter 1990] Dechter, R. 1990. Enhancement schemes for constraint processing: back-

jumping, learning, and cutset decomposition. Artificial Intelligence 41(3):273–312.

[Dubois & Dequen 2001] Dubois, O., and Dequen, G. 2001. A backbone-search heuristic

for efficient solving of hard 3-sat formulae. In Proceedings of the International Joint

Conference on Artificial Intelligence.

[Fang & Ruml 2004] Fang, H., and Ruml, W. 2004. Complete local search for proposi-

tional satisfiability. In Proceedings of the National Conference on Artificial Intelligence.

[Fleischner, Kullmann, & Szeider 2002] Fleischner, H.; Kullmann, O.; and Szeider, S.

2002. Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-

variable difference. Theoretical Computer Science 289(1):503–516.

[Freeman 1995] Freeman, J. W. 1995. Improvements to Propositional Satisfiability Search

Algorithms. Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.

[Freuder 1978] Freuder, E. C. 1978. Synthesizing constraint expressions. Communications

of the Association for Computing Machinery 21:958–966.

[Gaschnig 1979] Gaschnig, J. 1979. Performance Measurement and Analysis of Certain

Search Algorithms. Ph.D. Dissertation, Carnegie-Mellon University, Pittsburgh, PA.

[Gelder & Tsuji 1993] Gelder, A. V., and Tsuji, Y. K. 1993. Satisfiability testing with

more reasoning and less guessing. In Johnson, D. S., and Trick, M. A., eds., Second

DIMACS Implementation Challenge. American Mathematical Society.

[Gelder 2002] Gelder, A. V. 2002. Generalizations of watched literals for backtracking

search. In Seventh International Symposium on Artificial Intelligence and Mathematics.

[Gent & Walsh 1996] Gent, I. P., and Walsh, T. 1996. The satisfiability constraint gap.

Artificial Intelligence 81(1-2):59–80.

134

[Ginsberg & McAllester 1994] Ginsberg, M. L., and McAllester, D. 1994. GSAT and

dynamic backtracking. In Proceedings of the International Conference on Principles of

Knowledge and Reasoning, 226–237.

[Ginsberg 1993] Ginsberg, M. L. 1993. Dynamic backtracking. Journal of Artificial

Intelligence Research 1:25–46.

[Goldberg & Novikov 2002] Goldberg, E., and Novikov, Y. 2002. BerkMin: a fast and

robust sat-solver. In Proceedings of the Design and Test in Europe Conference, 142–149.

[Gomes & Selman 1997] Gomes, C. P., and Selman, B. 1997. Algorithm portfolio design:

Theory vs. practice. In Proceedings of the Thirteenth Conference On Uncertainty in

Artificial Intelligence.

[Gomes & Shmoys 2002] Gomes, C., and Shmoys, D. 2002. Completing quasigroups or

latin squares: A structured graph coloring problem. In Proceedings of the Computational

Symposium on Graph Coloring and Generalizations.

[Gomes et al. 2000] Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. A. 2000. Heavy-

tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Au-

tomated Reasoning 24(1/2):67–100.

[Gomes, Selman, & Kautz 1998] Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting

combinatorial search through randomization. In Proceedings of the National Conference

on Artificial Intelligence, 431–437.

[Groote & Warners 2000] Groote, J. F., and Warners, J. P. 2000. The propositional

formula checker heerhugo. In Gent, I.; van Maaren, H.; and Walsh, T., eds., SAT 2000.

IOS Press. 261–281.

[Hooker & Vinay 1995] Hooker, J. N., and Vinay, V. 1995. Branching rules for satisfia-

bility. Journal of Automated Reasoning 15:359–383.

[Jeroslow & Wang 1990] Jeroslow, R. G., and Wang, J. 1990. Solving propositional sat-

isfiability problems. Annals of Mathematics and Artificial Intelligence 1:167–187.

135

[Kautz & Selman 2003] Kautz, H., and Selman, B. 2003. Ten challenges redux: Recent

progress in propositional reasoning and search. In Proceedings of the International

Conference on Principles and Practice of Constraint Programming.

[Kunz & Stoffel 1997] Kunz, W., and Stoffel, D. 1997. Reasoning in Boolean Networks.

Kluwer Academic Publishers.

[Li & Anbulagan 1997] Li, C. M., and Anbulagan. 1997. Look-ahead versus look-back

for satisfiability problems. In Proceedings of the International Conference on Principles

and Practice of Constraint Programming, 341–355.

[Li 2000] Li, C. M. 2000. Integrating equivalency reasoning into Davis-Putnam procedure.

In Proceedings of the National Conference on Artificial Intelligence, 291–296.

[Lynce & Marques-Silva 2001] Lynce, I., and Marques-Silva, J. P. 2001. The puzzling role

of simplification in propositional satisfiability. In Proceedings of the EPIA Workshop

on Constraint Satisfaction and Operational Research Techniques for Problem Solving,

73–86.

[Lynce & Marques-Silva 2002a] Lynce, I., and Marques-Silva, J. P. 2002a. Building state-

of-the-art SAT solvers. In Harmelen, V., ed., Proceedings of the European Conference

on Artificial Intelligence, 166–170. IOS Press.

[Lynce & Marques-Silva 2002b] Lynce, I., and Marques-Silva, J. P. 2002b. Complete un-

restricted backtracking algorithms for satisfiability. In Proceedings of the International

Symposium on Theory and Applications of Satisfiability Testing, 214–221.

[Lynce & Marques-Silva 2002c] Lynce, I., and Marques-Silva, J. P. 2002c. Efficient data

structures for backtrack search SAT solvers. In Proceedings of the International Sym-

posium on Theory and Applications of Satisfiability Testing, 308–315.

[Lynce & Marques-Silva 2003a] Lynce, I., and Marques-Silva, J. P. 2003a. The effect of

nogood recording in DPLL-CBJ SAT algorithms. In O’Sullivan, B., ed., Recent Ad-

vances in Constraints, volume 2627 of Lecture Notes in Artificial Intelligence. Springer

Verlag. 144–158.

136

[Lynce & Marques-Silva 2003b] Lynce, I., and Marques-Silva, J. P. 2003b. On implement-

ing more efficient SAT data structures. In Proceedings of the International Symposium

on Theory and Applications of Satisfiability Testing, 510–516.

[Lynce & Marques-Silva 2003c] Lynce, I., and Marques-Silva, J. P. 2003c. An overview

of backtrack search satisfiability algorithms. Annals of Mathematics and Artificial In-

telligence 37(3):307–326.

[Lynce & Marques-Silva 2003d] Lynce, I., and Marques-Silva, J. P. 2003d. Probing-based

preprocessing techniques for propositional satisfiability. In Proceedings of the IEEE

International Conference on Tools with Artificial Intelligence.

[Lynce & Marques-Silva 2004a] Lynce, I., and Marques-Silva, J. 2004a. On computing

minimum unsatisfiable cores. In Proceedings of the International Symposium on Theory

and Applications of Satisfiability Testing, 305–310.

[Lynce & Marques-Silva 2004b] Lynce, I., and Marques-Silva, J. P. 2004b. Hidden struc-

ture in unsatisfiable random 3-SAT: an empirical study. In Proceedings of the IEEE

International Conference on Tools with Artificial Intelligence.

[Lynce & Marques-Silva 2005a] Lynce, I., and Marques-Silva, J. P. 2005a. Efficient data

structures for backtrack search SAT solvers. Annals of Mathematics and Artificial

Intelligence 43(1-4):137–152.

[Lynce & Marques-Silva 2005b] Lynce, I., and Marques-Silva, J. P. 2005b. Random back-

tracking in backtrack search algorithms for satisfiability. Discrete Applied Mathematics.

To be published in 2005.

[Lynce, Baptista, & Marques-Silva 2001a] Lynce, I.; Baptista, L.; and Marques-Silva,

J. P. 2001a. Stochastic systematic search algorithms for satisfiability. In Proceedings

of the LICS Workshop on Theory and Applications of Satisfiability Testing, 1–7.

[Lynce, Baptista, & Marques-Silva 2001b] Lynce, I.; Baptista, L.; and Marques-Silva,

J. P. 2001b. Towards provably complete stochastic search algorithms for satisfia-

137

bility. In Brazdil, P., and Jorge, A., eds., Proceedings of the Portuguese Conference on

Artificial Intelligence, volume 2258 of Lecture Notes in Artificial Intelligence, 363–370.

[Lynce, Baptista, & Marques-Silva 2001c] Lynce, I.; Baptista, L.; and Marques-Silva,

J. P. 2001c. Unrestricted backtracking algorithms for satisfiability. In Proceedings

of the AAAI Fall Symposium Using Uncertainty within Computation, 76–82.

[Mammen & Hogg 1997] Mammen, D. L., and Hogg, T. 1997. A new look at the easy-

hard-easy pattern of combinatorial search difficulty. Journal of Artificial Intelligence

Research 7:47–66.

[Marques-Silva & Glass 1999] Marques-Silva, J. P., and Glass, T. 1999. Combinational

equivalence checking using satisfiability and recursive learning. In Proceedings of the

ACM/IEEE Design, Automation and Test in Europe Conference, 145–149.

[Marques-Silva & Sakallah 1996] Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP:

A new search algorithm for satisfiability. In Proceedings of the ACM/IEEE International

Conference on Computer-Aided Design, 220–227.

[Marques-Silva & Sakallah 1999] Marques-Silva, J. P., and Sakallah, K. A. 1999. GRASP-

A search algorithm for propositional satisfiability. IEEE Transactions on Computers

48(5):506–521.

[Marques-Silva 1999] Marques-Silva, J. P. 1999. The impact of branching heuristics in

propositional satisfiability algorithms. In Barahona, P., and Alferes, J., eds., Proceedings

of the Portuguese Conference on Artificial Intelligence, volume 1695 of Lecture Notes

in Artificial Intelligence, 62–74. Springer-Verlag.

[Marques-Silva 2000] Marques-Silva, J. P. 2000. Algebraic simplification techniques for

propositional satisfiability. In Dechter, R., ed., Proceedings of the International Con-

ference on Principles and Practice of Constraint Programming, volume 1894 of Lecture

Notes in Computer Science, 537–542. Springer Verlag.

138

[McAllester, Selman, & Kautz 1997] McAllester, D.; Selman, B.; and Kautz, H. 1997.

Evidence of invariants in local search. In Proceedings of the National Conference on

Artificial Intelligence, 321–326.

[McMillan 2003] McMillan, K. L. 2003. Interpolation and SAT-based model checking. In

Proceedings of Computer Aided Verification.

[Monasson et al. 1999] Monasson, R.; Zecchina, R.; Kirkpatrick, S.; Selman, B.; and

Troyansky, L. 1999. Determining computational complexity from characteristic phase

transitions. Nature 400:133–137.

[Moskewicz et al. 2001] Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik, S.

2001. Engineering an efficient SAT solver. In Proceedings of the Design Automation

Conference, 530–535.

[Nadel 2002] Nadel, A. 2002. Backtrack search algorithms for propositional logic satisfi-

ability: Review and innovations. Master’s thesis, Hebrew University of Jerusalem.

[Novikov 2003] Novikov, Y. 2003. Local search for boolean relations on the basis of unit

propagation. In Proceedings of the Design and Test in Europe Conference.

[Ostrowski et al. 2002] Ostrowski, R.; Grégoire, E.; Mazure, B.; and Sais, L. 2002. Re-

covering and exploiting structural knowledge from cnf formulas. In Proceedings of the

International Conference on Principles and Practice of Constraint Programming, 185–

199.

[Papadimitriou & Wolfe 1988] Papadimitriou, C. H., and Wolfe, D. 1988. The complexity

of facets resolved. Journal of Computer and System Sciences 37(1):2–13.

[Prestwich 2000] Prestwich, S. 2000. A hybrid search architecture applied to hard random

3-SAT and low-autocorrelation binary sequences. In Proceedings of the International

Conference on Principles and Practice of Constraint Programming, 337–352.

[Prosser 1993] Prosser, P. 1993. Hybrid algorithms for the constraint satisfaction prob-

lems. Computational Intelligence 9(3):268–299.

139

[Richards & Richards 2000] Richards, E. T., and Richards, B. 2000. Non-systematic

search and no-good learning. Journal of Automated Reasoning 24(4):483–533.

[Robinson 1965] Robinson, J. A. 1965. A machine-oriented logic based on the resolution

principle. Journal of the Association for Computing Machinery 12(1):23–41.

[Ruan, Kautz, & Horvitz 2004] Ruan, Y.; Kautz, H.; and Horvitz, E. 2004. The back-

door key: A path to understanding problem hardness. In Proceedings of the National

Conference on Artificial Intelligence.

[Ryan 2004] Ryan, L. 2004. Efficient algorithms for clause-learning SAT solvers. Master’s

thesis, Simon Fraser University.

[Selman & Kautz 1993] Selman, B., and Kautz, H. 1993. Domain-independent exten-

sions to GSAT: Solving large structured satisfiability problems. In Proceedings of the

International Joint Conference on Artificial Intelligence, 290–295.

[Selman, Kautz, & McAllester 1997] Selman, B.; Kautz, H.; and McAllester, D. 1997.

Ten challenges in propositional reasoning and search. In Proceedings of the International

Joint Conference on Artificial Intelligence.

[Selman, Levesque, & Mitchell 1992] Selman, B.; Levesque, H.; and Mitchell, D. 1992.

A new method for solving hard satisfiability problems. In Proceedings of the National

Conference on Artificial Intelligence, 440–446.

[Selman, Mitchell, & Levesque 1996] Selman, B.; Mitchell, D. G.; and Levesque, H. J.

1996. Generating hard satisfiability problems. Artificial Intelligence 81(1-2):17–29.

[Stallman & Sussman 1977] Stallman, R. M., and Sussman, G. J. 1977. Forward rea-

soning and dependency-directed backtracking in a system for computer-aided circuit

analysis. Artificial Intelligence 9:135–196.

[St̊almarck 1989] St̊almarck, G. 1989. A system for determining propositional logic theo-

rems by applying values and rules to triplets that are generated from a formula. Swedish

140

Patent 467 076 (Approved 1992), US Patent 5 276 897 (approved 1994), European

Patent 0 403 454 (approved 1995).

[Tseitin 1968] Tseitin, G. S. 1968. On the complexity of derivation in propositional

calculus. Studies in Constructive Mathematics and Mathematical Logic, Part II 115–

125.

[Uribe & Stickel 1994] Uribe, T. E., and Stickel, M. E. 1994. Ordered binary decision

diagrams and the davis-putnam procedure. In Proceedings of the First International

Conference on Constraints in Computational Logics, 34–49.

[Velev & Bryant 1999] Velev, M. N., and Bryant, R. E. 1999. Superscalar processor verifi-

cation using efficient reductions from the logic of equality with uninterpreted functions

to propositional logic. In Proceedings of Correct Hardware Design and Verification

Methods, LNCS 1703, 37–53.

[Walsh 1999] Walsh, T. 1999. Search in a small world. In Proceedings of the International

Joint Conference on Artificial Intelligence, 1172–1177.

[Williams, Gomes, & Selman 2003] Williams, R.; Gomes, C. P.; and Selman, B. 2003.

Backdoors to typical case complexity. In Proceedings of the International Joint Con-

ference on Artificial Intelligence.

[Yokoo 1994] Yokoo, M. 1994. Weak-commitment search for solving satisfaction problems.

In Proceedings of the National Conference on Artificial Intelligence, 313–318.

[Zabih & McAllester 1988] Zabih, R., and McAllester, D. A. 1988. A rearrangement

search strategy for determining propositional satisfiability. In Proceedings of the Na-

tional Conference on Artificial Intelligence, 155–160.

[Zhang & Malik 2003] Zhang, L., and Malik, S. 2003. Validating SAT solvers using an in-

dependent resolution-based checker: Practical implementations and other applications.

In Proceedings of the Design and Test in Europe Conference, 10880–10885.

141

[Zhang & Stickel 2000] Zhang, H., and Stickel, M. 2000. Implementing the Davis-Putnam

method. In Gent, I.; van Maaren, H.; and Walsh, T., eds., SAT 2000. IOS Press. 309–

326.

[Zhang 1997] Zhang, H. 1997. SATO: An efficient propositional prover. In Proceedings of

the International Conference on Automated Deduction, 272–275.

142

