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Abstract. Local search is widely applied to satisfiable SAT problems,
and on some classes outperforms backtrack search. An intriguing chal-
lenge posed by Selman, Kautz and McAllester in 1997 is to use it instead
to prove unsatisfiability. We investigate two distinct approaches. Firstly
we apply standard local search to a reformulation of the problem, such
that a solution to the reformulation corresponds to a refutation of the
original problem. Secondly we design a greedy randomised resolution
algorithm that will eventually discover proofs of any size while using
bounded memory. We show experimentally that both approaches can
refute some problems more quickly than backtrack search.

1 Introduction

Most SAT solvers can be classed either as complete or incomplete, and the com-
plete algorithms may be based on resolution or backtracking. Resolution provides
a complete proof system by refutation [24]. The first resolution algorithm was
the Davis-Putnam (DP) procedure [6] which was then modified to the Davis-
Putnam-Logemann-Loveland (DPLL) backtracking algorithm [7]. Because of its
high space complexity, resolution is often seen as impractical for real-world prob-
lems, but there are problems on which general resolution proofs are exponentially
smaller than DPLL proofs [4]. Incomplete SAT algorithms are usually based on
local search following early work by [14, 26], but metaheuristics such as genetic
algorithms may also be applied. On some large satisfiable problems, local search
finds a solution much more quickly than complete algorithms, though it currently
compares rather badly with backtracking algorithms on industrial benchmarks.

An interesting question is: can local search be applied to unsatisfiable prob-
lems? Such a method might be able to refute (prove unsatisfiable) SAT problems
that defy complete algorithms. This was number five of the ten SAT challenges
posed by Selman, Kautz and McAllester in 1997: design a practical stochastic

local search procedure for proving unsatisfiability [25]. While substantial progress
has been made on several challenges, this one remains wide open [18], and we ex-
plore two distinct ways of attacking it. It was suggested in [18] that local search
could be applied to a space of incomplete proof trees, and our first approach uses
a related idea: we apply standard local search to a space of (possibly incorrect)



proof graphs each represented by a clause list. In order to exploit current local
search technology, this is done via a new reformulation of the original SAT prob-
lem. Our second approach is a new local search algorithm that explores a space
of resolvent multisets, and aims to derive the empty clause non-systematically.

The paper is organised as follows. In Section (2) we SAT-encode the meta-
problem of finding a proof for a given SAT problem. Section (3) describes the
new local search algorithm. Section (4) discusses related work. Finally, Section
(5) concludes the paper.

2 Local search on a reformulated problem

Our first approach is to apply existing local search algorithms to a reformulation
of the original SAT problem: a solution to the reformulation corresponds to a
refutation of the original problem. A potential drawback with this approach is
the sheer size of the reformulation, and it is noted in [18] that a key issue is

the need to find smaller proof objects . Much of our effort is therefore devoted to
reducing the size of the reformulation.

2.1 Initial model

Suppose we have an unsatisfiable SAT problem with n variables v1 . . . vn and m
clauses, and we want to prove unsatisfiability using no more than r resolvents.
We can represent the proof as an ordered list of m + r clauses, with the first
m clauses being those of the problem, and each of the other clauses being a
resolvent of two earlier clauses (which we call the parents of the resolvent).
The final resolvent must be empty. This meta-problem can be SAT-encoded as
follows.

Define meta-variables xikp (where i < k and p ∈ {0, 1}) to be true (T ) iff
clause k in the list is a resolvent of clause i and another unspecified clause in the
list, using an unspecified variable occurring in i as either a positive (p = 1) or
negative (p = 0) literal. Define ukv = T iff clause k was the result of a resolution
using variable v. Define oivp = T iff literal v/p occurs in clause i: v/1 denotes
literal v, and v/0 literal v̄, and we shall refer to p as the sign of the literal. Define
dkvq = T iff variable v in resolvent k occurs in a literal v/q in the parent clause.
For example if clause 10 (v̄36 ∨ v37) is resolved with clause 12 (v36 ∨ v38) to
give clause 17 (v37 ∨ v38) then the following meta-variables are all true: o36,10,0,
o37,10,1, o36,12,1, o38,12,1, o37,17,1, o38,17,1, x10,17,0, x12,17,1, u17,36, d17,37,0, d17,38,1.
There are O(r2 + rm + rn + mn) meta-variables.

The meta-clauses are as follows, with their space complexities in terms of
number of literals. We represent the SAT problem by the following unary meta-
clauses for all literals v/p [not] occurring in clauses i:

oivp [ōivp] O(mn) (1)

Each resolvent must be the resolvent of one earlier clause in the list using a
variable positively and one negatively. We use two sets of meta-clauses to ensure



that at least one, and no more than one, earlier clause is used:
∨

i

xikp O(r(m + r)) (2)

x̄ikp ∨ x̄jkp O(r(m + r)2) (3)

Exactly one variable is used to generate a resolvent:
∨

v

ukv O(nr) (4)

ūkv ∨ ūkw O(n2r) (5)

If k is a resolvent using v then v does not occur in k:

ūkv ∨ ōkvp O(nr) (6)

If k is the resolvent of i and another clause using a variable with sign p, and k
is a resolvent using variable v, then v/p occurs in i:

x̄ikp ∨ ūkv ∨ oivp O(nr(m + r)) (7)

Every literal in k occurs in a literal of at least one of its parent clauses:

ōkvp ∨ dkv0 ∨ dkv1 O(nr) (8)

d̄kvq ∨ ōkvp ∨ x̄ikq ∨ oivp O(nr(m + r)) (9)

(Variables dkvq were introduced to avoid referring to both parent clauses of k in
a single meta-clause, which would increase the space complexity.) If i is a parent
clause of k using a variable occurring with sign p in i, v/p occurs in i, and v was
not used in the resolution generating k, then v/p occurs in k:

x̄ikp ∨ ōivp ∨ ukv ∨ okvp O(nr(m + r)) (10)

If i is a parent clause of k using a variable occurring with sign p in i, and v/p̄
occurs in i, then v/p̄ occurs in k:

x̄ikp ∨ ōivp̄ ∨ okvp̄ O(nr(m + r)) (11)

The last resolvent is empty:

ōm+r vp O(n) (12)

Tautologous resolvents are excluded (we assume that the original problem con-
tains no tautologies):

∨

p

ōkvp O(nr) (13)

Every resolvent is used in a later resolution, so for m ≤ i < k ≤ m + r:
∨

k

∨

p

xikp O(r2) (14)

This meta-encoding has O(nr(m + r)2 + n2r) literals which can be reduced in
several ways as follows.



2.2 Model reduction by unit resolution

The model can be reduced by observing that many meta-variables appear in
unary meta-clauses, and can therefore be eliminated. For every variable v and
every original clause i we have a meta-variable oivp that occurs in a unary meta-
clause (either ōivp or oivp depending on whether literal v/p occurs in i). All of
these O(mn) meta-variables can be eliminated by resolving on the unary meta-
clauses (1). For any such unary clause l: any clause A ∨ l is a tautology and
can be removed; any clause A ∨ l̄ can be replaced by A via unit resolution and
subsumption; and clause l itself can then be deleted by the pure literal rule. This
leaves O(r2 +mr+nr) meta-variables. If we are searching for a short proof then
mn is the dominant term in the number of meta-variables, so we have eliminated
most of them. The complexity of some sets of meta-clauses is reduced by unit
resolution. Suppose that λ is the mean clause length divided by n, so that mnλ
is the size in literals of the original problem. Then after unit resolution (7,8,9)
become O(nr(m(1−λ)+ r) and (10,11) become O(nr(mλ+ r)). The total space
complexity of (7,8,9,10,11) is still O(nr(m + r)) but we will eliminate some of
these below.

2.3 Model reduction by weakening rule

We can greatly reduce the space complexity by allowing the proof to use the
weakening rule, in which any literals may be added to a clause as long as this does
not create a tautology. This allows us to remove some of the largest sets of meta-
clauses: (7,8,9), removing the nr(m(1−λ)+r) terms from the space complexity.
This is a significant reduction: in a SAT problem without tautologous clauses λ ≤
0.5 but a typical problem will have a much smaller value, for example in a random
3-SAT problem λ = 3

n
, and the meta-encoding with r = 10 of a 600-variable

problem from the phase transition is reduced from approximately 92,000,000
to 300,000 clauses (in both cases applying all our other reduction techniques).
Removing these meta-clauses allows new literals to be added to a resolvent. For
example A ∨ x and B ∨ x̄ may be the parent clauses of A ∨ B ∨ C for some
disjunction C. The dkvq variables no longer occur in any meta-clauses and can
be removed. The total space complexity is now O(r(m+r)2 +n2r +nr(mλ+r))
literals.

2.4 Model reduction by allowing multiple premises

We can eliminate the r(m + r)2 complexity term by dropping meta-clauses (3),
allowing a resolvent to have more than one parent clause of a given sign. For
example A∨x, A∨x and B∨ x̄ may be parent clauses of A∨B. When combined
with the use of the weakening rule we obtain the more general: x ∨ Ai and
x̄ ∨ Bj may all be parent clauses of

∨
i Ai ∨

∨
j Bj (assuming that this clause is

non-tautologous) because each of the possible resolvents can be extended to this
clause via weakening. The total space complexity is now O(n2r + nr(mλ + r))
literals.



2.5 Model reduction by ladder encoding

We can eliminate the n2r term by replacing meta-clauses (5) with a ladder encod-

ing of the at-most-one constraint, adapted from [11]. Because we are using local
search we are not concerned with the propagation properties of the encoding, so
we can omit some clauses from the original ladder encoding. Define O(nr) new
variables lkv and add ladder validity clauses lkv ∨ l̄k v−1 and channelling clauses
ūkv∨ l̄k v−1 and ūkv∨lkv . These clauses are sufficient to prevent any pair ukv , ukw

from both being true. This set of meta-clauses has only O(nr) literals instead
of the O(n2r) of (5), so the total space complexity is now O(nr(mλ + r)). In
summary, the reduced meta-encoding contains O(r2 + mr + nr) variables and
O(nr2 + rs) literals where s = mnλ is the size in literals of the original SAT
problem. We conjecture that this cannot be reduced further.

2.6 Discussion of the meta-encoding

A useful property of the model is that we can overestimate r, which we would
not normally know precisely in advance. This is because for any proof of length
r there exists another proof of length r + 1. Suppose a proof contains a clause
i : x ∨ A and a later clause j : x̄ ∨ B, which are resolved to give k : A ∨ B ∨ C
where A, B, C are (possibly empty) disjunctions of literals and C is introduced
by weakening. Then between j and k we can insert a new clause k′ : x∨A∨B∨C
derived from i, j and derive k from i, k′. If a appears in C then first remove it;
we can always remove literals introduced by weakening without affecting the
correctness of the proof.

Whereas local search on a SAT problem can prove satisfiability but not unsat-
isfiability, local search on the meta-encoding can prove unsatisfiability but not
satisfiability. We can apply any standard local search algorithm for SAT to a
meta-encoded problem. Many such algorithms have a property called probabilis-

tic approximate completeness (PAC) [15]: the probability of finding a solution
tends to 1 as search time tends to infinity. PAC has been shown to be an im-
portant factor in the performance of practical local search algorithms [15], and
we expect it to be important also in proving unsatisfiability. If we use a PAC
local algorithm then it will eventually refute any unsatisfiable problem, given
sufficient time and assuming that we set the proof length r high enough.

2.7 Experiments

The local search algorithm we use is RSAPS [16], a state-of-the-art dynamic local
search algorithm that has been shown to be robust over a variety of problem types
using default runtime parameters. Its performance can sometimes be improved
by parameter tuning but in our experiments the difference was not great, nor did
any other local search algorithm we tried perform much better. All experiments
in this paper were performed on a 733 MHz Pentium II with Linux.

We will make use of two unsatisfiable problems. One is derived from the well-
known pigeon hole problem: place n + 1 pigeons in n holes, such that no hole



receives more than one pigeon. The SAT model has variables vij for pigeons i
and holes j. Clauses

∨
j vij place each pigeon in at least one hole, and clauses

v̄ij ∨ v̄i′j prevent more than one pigeon being placed in any hole. The 2-hole
problem, which we denote by HOLE2, has a refutation of size 10. The other
problem is one we designed and call HIDER:

a1 ∨ b1 ∨ c1 ā1 ∨ d ∨ e b̄1 ∨ d ∨ e c̄1 ∨ d ∨ e
a2 ∨ b2 ∨ c2 ā2 ∨ d̄ ∨ e b̄2 ∨ d̄ ∨ e c̄2 ∨ d̄ ∨ e
a3 ∨ b3 ∨ c3 ā3 ∨ d ∨ ē b̄3 ∨ d ∨ ē c̄3 ∨ d ∨ ē
a4 ∨ b4 ∨ c4 ā4 ∨ d̄ ∨ ē b̄4 ∨ d̄ ∨ ē c̄4 ∨ d̄ ∨ ē

From these clauses we can derive d∨e, d̄∨e, d∨ē or d̄∨ē in 3 resolution steps each.
For example resolving (a1∨b1∨c1) with (ā1∨d∨e) gives (b1∨c1∨d∨e); resolving
this with (b̄1 ∨ d ∨ e) gives (c1 ∨ d ∨ e); and resolving this with (c̄1 ∨ d ∨ e) gives
(d∨e). From these 4 resolvents we can obtain d and d̄ (or e and ē) in 2 resolution
steps. Finally, we can obtain the empty clause in 1 more resolution step, so this
problem has a refutation of size 15. We designed HIDER to be hidden in random
3-SAT problems as an unsatisfiable sub-problem with a short refutation. All its
clauses are ternary and no variable occurs more than 12 times. In a random 3-
SAT problem from the phase transition each variable occurs an expected 12.78
times, so these clauses blend well with the problem, and a backtracker has no
obvious reason to focus on the new variables. Moreover, a resolution refutation of
HIDER requires the generation of quaternary clauses, which SATZ’s compactor

preprocessor [19] does not generate. We combine both HIDER and HOLE2 with
a random 3-SAT problem by renumbering their variables so that they are distinct
from the 3-SAT variables, then taking the union of the two clause sets. We denote
such a combination of two problems A and B by A + B, where A’s variables are
renumbered. We performed experiments to obtain preliminary answers to several
questions.

What is the effect of the weakening rule on local search perfor-

mance? To allow weakening in the refutation we may remove some meta-clauses
as described in Section 2.3. Dropping clauses from a SAT problem can increase
the solution density, which sometimes helps local search to solve the problem,
but here it has a bad effect. RSAPS was able to refute HIDER in a few seconds
(it is trivial to refute by DPLL) using the meta-encoding without weakening, but
with weakening it did not terminate in a reasonable time. This was surprising for
such a tiny problem: perhaps the meta-encoding is missing some vital ingredient
such as a good set of implied clauses.

What is the effect of allowing unused resolvents? We tested the effect
of dropping meta-clauses (14), which are optional (and do not affect the space
complexity). Removing them allows a resolvent to be added to the proof then not
used further. In experiments omitting them made HIDER much harder to refute,
presumably by not penalising the construction of irrelevant chains of resolvents.

What effect does the allowed proof length have on local search per-

formance? On HIDER under the original meta-encoding (without weakening)
RSAPS finds the refutation very hard with r set to its minimum value of 15.



However, as r increases the runtime decreases to a few seconds. The number of
flips decreases as r increases, but the increasing size of the model means that
using larger r eventually ceases to pay off.

Can local search on a reformulation beat DPLL on an unsatisfiable

problem? We combined HOLE2 with f600, a fairly large, satisfiable, random 3-
SAT problem from the phase transition region.1 HOLE2+f600 has a refutation of
size 10 and we set r = 20. ZChaff [21] aborted the proof after 10 minutes, whereas
RSAPS found a refutation in a median of 1,003,246 flips and 112 seconds, over
100 runs. However, SATZ refutes the problem almost instantly.

3 Local search on multisets of resolvents

A drawback with the reformulation approach is that it is only practical for
proofs of relatively small size. Our second approach is to design a new local
search algorithm that explores multisets of resolvents, and can in principle find
a proof of any size while using only bounded memory. To determine how much
memory is required we begin by reviewing a theoretical result from [8].

Given an unsatisfiable SAT formula φ with n variables and m clauses, a
general resolution refutation can be represented by a series of formulae φ1, . . . , φs

where φ1 consists of some or all of the clauses in φ, and φs contains the empty
clause. Each φi is obtained from φi−1 by (optionally) deleting some clauses in
φi−1, adding the resolvent of two remaining clauses in φi−1, and (optionally)
adding clauses from φ. The space of a proof is defined as the minimum k such
that each φi contains no more than k clauses.

Intuitively each φi represents the set of active clauses at step i of the proof.
Inactive clauses are not required for future resolution, and after they have been
used as needed they can be deleted. It is proved in [8] that the space k need be
no larger than n + 1: possibly fewer clauses than in φ itself.

The width of a proof is the length (in literals) of the largest clause in the
proof. Any non-tautologous clause must have length no greater than n, so this
is a trivial upper bound for the width used for our algorithm. However, short
proofs are also narrow [3] so in practice we may succeed even if we restrict
resolvent length to some small value. This may be useful for saving memory on
large problems.

Thus we can in principle find a large refutation using a modest amount of
working memory. But finding such a proof may not be easy. We shall use the
above notions as the basis for a novel local search algorithm that performs a
randomised but biased search in the space of formulae φi. Each φi will be of the
same constant size, and derived from φi−1 by the application of resolution or
the replacement of a clause by one taken from φ. We call our algorithm ranger

(RANdomised GEneral Resolution).

1 Available at http://www.cs.ubc.ca/˜hoos/SATLIB/



3.1 The algorithm

The ranger architecture is shown in Figure 1. It has six parameters: the size k
of the φi, the width w, three probabilities pi, pt, pg and the formula φ.

1 RANGER(φ, pi, pt, pg, w, k):
2 i← 1 and φ1 ← {any k clauses from φ}
3 while φi does not contain the empty clause

4 with probability pi

5 replace a random φi clause by a random φ clause

6 otherwise

7 resolve random φi clauses c, c′ giving r

8 if r is non-tautologous and |r| ≤ w

9 with probability pg

10 if |r| ≤ max(|c|, |c′|) replace the longer of c, c′ by r

11 otherwise

12 replace a random φi clause by r

13 with probability pt

14 apply any satisfiability-preserving transformation to φ, φi

15 i← i + 1 and φi+1 ← {the new formula}
16 return UNSATISFIABLE

Fig. 1. The ranger architecture

ranger begins with any sub-multiset φ1 ⊆ φ (we shall interpret φ, φi as
multisets of clauses). It then performs iterations i, each either replacing a φi

clause by a φ clause (with probability pi), or resolving two φi clauses and plac-
ing the result r into φi+1. In the latter case, if r is tautologous or contains more
than w literals then it is discarded and φi+1 = φi. Otherwise a φi clause must
be removed to make room for r: either (with probability pg) the removed clause
is the longer of the two parents of r (breaking ties randomly), or it is randomly
chosen. In the former case, if r is longer than the parent then r is discarded
and φi+1 = φi. At the end of the iteration, any satisfiability-preserving trans-
formation may (with probability pt) be applied to φ, φi+1 or both. If the empty
clause has been derived then the algorithm terminates with the message “unsat-
isfiable”. Otherwise the algorithm might not terminate, but a time-out condition
(omitted here for brevity) may be added.

Local search algorithms usually use greedy local moves that reduce the value
of an objective function, or plateau moves that leave it unchanged. However, they
must also allow non-greedy moves in order to escape from local minima. This
is often controlled by a parameter known as noise (or temperature in simulated
annealing). But what is our objective function? Our goal is to derive the empty
clause, and a necessary condition for this to occur is that φi contains at least some
small clauses. We will call a local move greedy if it does not increase the number
of literals in φi. This is guaranteed on line 10, so increasing pg increases the



greediness of the search, reducing the proliferation of large resolvents. There may
be better forms of greediness but this form is straightforward, and in experiments
it significantly improved performance on some problems.

3.2 A convergence property

We show that ranger has the PAC property, used here to mean that given
sufficient time it will refute any unsatisfiable problem:

Theorem. For any unsatisfiable SAT problem with n variables and m clauses,

ranger is PAC if pi > 0, pi, pt, pg < 1, w = n and k ≥ n + 1.

Proof. Firstly, any proof of the form in [8] can be transformed to one in
which (i) all the φi have exactly k clauses, possibly with some duplications,
and (ii) φi+1 is derived from φi by replacing a clause either by a φ clause or a
resolvent of two φi clauses. Take any proof and expand each set φi to a multiset
φ′

i by adding arbitrary φ clauses, allowing duplications. Suppose that φi+1 was
originally derived from φi by removing a (possibly non-empty) set S1 of clauses,
adding the resolvent r of two φi clauses, and adding a (possibly non-empty) set
S2 of clauses. Then φ′

i+1 can be derived from φi by removing a multiset S ′

1 of
clauses, adding r, and adding another multiset S ′

2. Because all the φ′

i are of the
same size k it must be true that |S ′

1| + 1 = |S′

2|. Then we can derive φ′

i+1 from
φ′

i by replacing one S′

1 clause by r, then then replacing the rest by S ′

2 clauses.
Secondly, any transformed proof may be discovered by ranger from an

arbitrary state φ′

i. Suppose that the proof begins from a multiset φ∗. Then φ′

i

may be transformed into φ∗ in at most k moves (they may already have clauses
in common), each move being the replacement of a φ′

i clause by a φ∗ clause.
From φ∗ the transformed proof may then be recreated by ranger, which at
each move may perform any resolution or replacement. 2

3.3 Subsumption and pure literal elimination

Lines 13–14 provide an opportunity to apply helpful satisfiability-preserving
transformations to φ or φi or both. We apply the subsumption and pure lit-
eral rules in several ways:

– Randomly choose two φi clauses c, c′ containing a literal in common. If c
subsumes c′ then replace c′ by a random φ clause.

– Randomly choose two φ clauses c, c′ containing a literal in common. If c
subsumes c′ then delete c′.

– Randomly choose a φ clause c and a φi clause c′ containing a literal in
common. If c strictly subsumes c′ then replace c′ by c.

– If a randomly-chosen φi clause c contains a literal that is pure in φ then
replace c by a randomly-chosen φ clause.

– If a randomly-chosen φ clause c contains a literal that is pure in φ then delete
c from φ.



Each of these rules is applied once per ranger iteration with probability pt.
Using φi clauses to transform φ, a feature we shall call feedback , can preserve
useful improvements for the rest of the search. (We believe that for these par-
ticular transformations we can set pt = 1 without losing completeness, but we
defer the proof until a later paper.) Note that if φ is reduced then this will soon
be reflected in the φi via line 5 of the algorithm.

The space complexity of ranger is O(n + m + kw). To guarantee the PAC
property we require w = n and k ≥ n + 1 so the complexity becomes at least
O(m+n2). In practice we may require k to be several times larger, but a smaller
value of w is often sufficient. Recall that the meta-encoding has space complexity
O(nr2 + rs) where s is the size of the original problem and r the proof length.
Thus for short proofs the meta-encoding may be economical, but ranger’s space
complexity has the important advantage of being independent of the length of
the proof.

A note on implementation. We maintain a data structure that records the
locations in φ and φi of two clauses containing each of the 2n possible literals.
Two locations in this structure are randomly updated at each iteration and used
during the application of resolution, subsumption and the pure literal rule. The
implementation could no doubt be improved by applying the pure literal rule and
unit resolution as soon as possible, but our prototype relies on these eventually
being applied randomly.

3.4 Experiments

Again we performed experiments to answer some questions.
Does ranger perform empirically like a local search algorithm?

Though ranger has been described as a local search algorithm and has the
PAC property, it is very different from more standard local search algorithms.
It is therefore interesting to see whether its runtime performance is similar to
a standard algorithm. Figure 2 shows run-length distributions of the number of
iterations required for ranger to refute HIDER+f600, with pi = 0.1, pt = 0.9,
k = 10m, and 250 runs per curve. With no greed (pg = 0.00) there is heavy-
tailed behaviour. With maximum greed (pg = 1.00, not shown) a refutation
cannot be found because HIDER’s refutation contains quaternary resolvents,
which require non-greedy moves to derive from the ternary clauses. With high
greed (pg = 0.99) the median result is worse but there is no heavy tail. The best
results are with a moderate amount of greed (such as pg = 0.50): there is no
heavy-tailed behaviour and the median result is improved.

What is the effect of space on ranger’s performance? Though a low-
space proof may exist, performance was often improved by allowing more space:
10m usually gave far better results than the theoretical minimum of n + 1.

What is the effect of feedback on ranger’s performance? Feedback
was observed to accelerate refutation on some problems, especially as φ is some-
times reduced to a fraction of its original size.

Can ranger beat a non-trivial complete SAT algorithm on an un-

satisfiable problem? It refutes HOLE2+f600 in about 0.15 seconds: recall that
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Fig. 2. Three run-length distributions for ranger

RSAPS on the meta-encoding took over 100 seconds, which beat ZChaff but
not SATZ. ranger also refutes HIDER+f600 in about 1 second, easily beating
several backtrackers which take at least tens of minutes: ZChaff, SATZ, Siege,
POSIT and Minisat (if we renumber the variables, because Minisat branches on
the variables in reverse lexicographic order). On this problem ranger performs
roughly 130,000 iterations per second.

How does ranger perform on benchmarks? It can refute the automo-
tive product configuration problems of [27] in seconds or minutes, depending on
the instance, but these are easier for current backtrackers. It is interesting to note
that these problems are reduced to a fraction of their original size (approximately
1

20
) by ranger’s feedback mechanism. ranger also refutes aim-100-2 0-no-1 in

a few seconds, whereas Rish & Dechter’s DR resolution algorithm [23] takes tens
of minutes, as does the Tableau backtracker. But their resolution/backtrack hy-
brid algorithms take under 1 second, as does the compactor algorithm alone.
On unsatisfiable random 3-SAT problems ranger performs very poorly: an
interesting asymmetry, given that local search performs well on satisfiable ran-
dom problems. The DR algorithm refutes the dubois20/21 benchmarks quite
quickly while ranger finds them very hard. ranger refutes ssa0432-003 in
about 40 minutes, backtrackers take seconds, DR takes a long time, and a res-
olution/backtrack hybrid takes 40 seconds. ranger, DR and the hybrids take
a long time on bf0432-007, but current backtrackers find it easy. These results
are mixed, but in future work we hope to find a useful class of SAT problems
on which ranger is the algorithm of choice. These problems should be unsat-
isfiable, fairly large, not susceptible to backtrack search, and require resolution
proof of non-trivial width.



4 Related work

As of 2003 no work had been done on using local search to prove unsatisfiability
[18], and we are unaware of any such work since. However, some research may be
viewed as moving in this direction. Local search can be made complete by using
learning techniques, for example GSAT with dynamic backtracking [12], learn-
SAT [22] and Complete Local Search [9]. But the aim of these algorithms seems
to be to improve performance on satisfiable problems, not to speed up proof
of unsatisfiability. Learning algorithms may also require exponential memory in
the worst case, though in practice polynomial memory is often sufficient.

Backtracking algorithms have been modified with local search techniques, to
improve performance on both satisfiable and unsatisfiable problems. Recently
[20] proposed randomly selecting backtrack points within a complete backtrack
search algorithm. Search restarts can also be seen as a form of randomization
within backtrack search, and have been shown to be effective on hard SAT
instances [13]. The search is repeatedly restarted whenever a cutoff value is
reached. The algorithm proposed is not complete, since the restart cutoff point is
kept constant. But in [2] search restarts were combined with learning for solving
hard, real-world instances of SAT. This latter algorithm is complete, since the
backtrack cutoff value increases after each restart. Local search has also been
used to finding a good variable ordering, which is then used to speed up a DPLL
proof of unsatisfiability [5].

Hybrid approaches have also been tried for the more general class of QBF for-
mulas. WalkQSAT [10] has two main components. The first is the QBF engine,
which performs a backjumping search based on conflict and solution directed
backjumping. The second is the SAT engine, which is a slightly adapted version
of the WalkSAT local search algorithm used as an auxiliary search procedure to
find satisfying assignments quickly. The resulting solver is incomplete as it can
terminate without a definite result. WalkMinQBF [17] has also two main compo-
nents. The first is a local search algorithm that attempts to find an assignment
to the universal variables that is a witness for unsatisfiability. The second is a
complete SAT solver that tests the truth or falsity of SAT formulas that result
from assigning the universal variables. WalkMinQBF is also incomplete: it out-
puts unsatisfiable if a certificate of unsatisfiability is found, otherwise it outputs
unknown.

5 Conclusion

We proposed two distinct ways in which local search can be used to prove unsat-
isfiability, and demonstrated that there exist problems on which they outperform
backtracking (and in some cases systematic resolution) algorithms. As far as we
know, this is the first work reporting progress on the fifth SAT challenge of [25].
In experiments with both methods we noted an interesting trend: that short and
low-space proofs are harder to find by local search. It is therefore advisable to
allow greater length and space than theoretically necessary.



The more successful of our two approaches used randomised general resolu-
tion with greedy heuristics and other techniques. It is perhaps surprising that
this relatively short-sighted algorithm beats a sophisticated dynamic local search
algorithm, though they explore different search spaces and cannot be directly
compared. In future work we hope to improve the first approach by modifying
the reformulation, and the second by finding improved heuristics.

Powerful proof systems such as general resolution can in principle be used
to solve harder problems than more simple systems. In practice such systems
are rarely used, partly because of their excessive memory consumption, but also
because no good strategy is known for applying the inference rules in order to
find a small proof. In fact there may be no such strategy [1], and we suggest that
a non-systematic approach is an interesting research direction for such proof
systems.
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