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Abstract. We define a number of original encodings that map Max-
CSP instances into partial Max-SAT instances. Our encodings rely on the
well-known direct and support encodings from CSP into SAT. Then, we
report on an experimental investigation that was conducted to compare
the performance profile of our encodings on random binary Max-CSP
instances. Moreover, we define a new variant of the support encoding
from CSP into SAT which produces fewer clauses than the standard
support encoding.

1 Introduction

In the last years, there has been an increasing interest in the Boolean Max-SAT
problem. Taking into account the success of SAT on solving NP-complete deci-
sion problems, the SAT community investigates how to transfer the technology
created for SAT to Max-SAT with the aim of developing fast Max-SAT solvers,
which can be used to solve NP-hard optimization problems via their reduction
to Max-SAT.

The most recent and relevant results for Max-SAT can be summarized
as follows: (i) there exist solvers like Clone [21], Lazy [1], MaxSatz [18],
MiniMaxSat [12], ms4 [19], SR(w) [22] and Max-DPLL [15] which solve many
instances that are beyond the reach of the solvers existing just five years ago;
(ii) resolution refinements, which preserve the number of unsatisfied clauses, have
been incorporated into Max-SAT solvers [14, 15, 18], as well as good quality un-
derestimations of the lower bound [16, 17, 21, 22], (iii) a resolution-style calculus
for Max-SAT has been proven to be complete [5, 6], (iv) formalisms like Partial
Max-SAT have been investigated for solving problems with soft constraints [2,
8, 12, 3], and (v) two evaluations of Max-SAT solvers have been performed for
the first time as a co-located event of the International Conference on Theory
and Applications of Satisfiability Testing (SAT-2006 and SAT-2007).

? This research was funded by MEC research projects TIN2006-15662-C02-02,
TIN2007-68005-C04-04 and Acción Integrada HP2005-0147, and FCT research
projects SATPot (POSC/EIA/61852/2004) and SHIPs (PTDC/EIA/64164/2006).
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In this paper, we define a number of original encodings that map Max-CSP
instances into partial Max-SAT instances. Our encodings rely on the well-known
direct and support encodings from CSP into SAT. Then, we report on an exper-
imental investigation that was conducted to compare the performance profile of
our encodings on random binary Max-CSP instances. Interestingly, we also de-
fine a new variant of the support encoding from CSP into SAT which produces
fewer clauses than the standard support encoding. Our new encoding, called
minimal support encoding, eliminates redundant clauses.

The objective of our research is to show that different Max-SAT encodings
for a same optimization problem may produce substantial differences on per-
formance, as well as to identify features of the encodings that lead to better
performance profiles. To the best of our knowledge, this is the first paper that
addresses the question of how to encode Max-CSP into Max-SAT, and analyzes
the impact of modelling on the performance of Max-SAT solvers.

The structure of the paper is as follows. Section 2 contains preliminary defi-
nitions about Max-SAT and Max-CSP. Section 3 surveys the support and direct
encodings from CSP into SAT, and defines a new encoding that we call minimal
support encoding. Section 4 defines a number of original encodings from Max-
CSP into partial Max-SAT. Section 5 reports and analyses the experimental
investigation. Section 6 presents the conclusions and future research directions.

2 Preliminaries

2.1 Max-SAT definitions

In propositional logic a variable xi may take values 0 (for false) or 1 (for true).
A literal li is a variable xi or its negation x̄i. A clause is a disjunction of literals,
and a CNF formula is a multiset of clauses.

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal x̄i if xi takes the value 0, satisfies a
clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. An empty clause, denoted by 2,
contains no literals and cannot be satisfied.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment of values to propositional variables that maximizes the number of
satisfied clauses. In this sequel we often use the term Max-SAT meaning Min-
UNSAT. This is because, with respect to exact computations, finding an assign-
ment that minimizes the number of unsatisfied clauses is equivalent to finding
an assignment that maximizes the number of satisfied clauses.

We also consider the extension of Max-SAT known as Partial Max-SAT be-
cause it is more well-suited for representing and solving NP-hard problems. A
Partial Max-SAT instance is a CNF formula in which some clauses are relax-
able or soft and the rest are non-relaxable or hard. Solving a Partial Max-SAT
instance amounts to finding an assignment that satisfies all the hard clauses
and the maximum number of soft clauses. Hard clauses are represented between
square brackets, and soft clauses are represented between round brackets.
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2.2 Max-CSP definitions

Definition 1. A Constraint Satisfaction Problem (CSP) instance is defined
as a triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set of variables, D =
{d(X1), . . . , d(Xn)} is a set of finite domains containing the values the vari-
ables may take, and C = {C1, . . . , Cm} is a set of constraints. Each con-
straint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables
Si = {Xi1 , . . . , Xik

}, called the constraint scope. The relation Ri may be repre-
sented extensionally as a subset of the Cartesian product d(Xi1) × · · · × d(Xik

).

Definition 2. An assignment v for a CSP instance 〈X ,D, C〉 is a mapping that
assigns to every variable Xi ∈ X an element v(Xi) ∈ d(Xi). An assignment v
satisfies a constraint 〈{Xi1 , . . . , Xik

}, Ri〉 ∈ C iff 〈v(Xi1 ), . . . , v(Xik
)〉 ∈ Ri.

Definition 3. The Constraint Satisfaction Problem (CSP) for a CSP instance
P consists in deciding whether there exists an assignment that satisfies P .

In the sequel we assume that all CSPs are unary and binary; i.e., the scope
of all the constraints has cardinality at most two.

Definition 4. A CSP is node consistent, if for every variable Xi, every value
of the domain of Xi is allowed for the unary constraints on Xi. A CSP is arc
consistent, if for every constraint on two variables Xi and Yj , for all a ∈ d(Xi),
there exists b ∈ d(Yj), such that (a, b) is in the constraint.

Definition 5. The Max-CSP problem for a CSP instance 〈X ,D, C〉 is the prob-
lem of finding an assignment that minimizes (maximizes) the number of violated
(satisfied) constraints.

3 Encoding CSP into SAT

Mappings of binary CSPs into SAT is an area of research that has been in-
vestigated by several authors [4, 9–11, 13, 23]. They have proposed a number of
encodings having different performance profiles and achieving different degrees
of local propagation on SAT solvers. Among them, the most well-known are the
direct encoding and the support encoding. In the rest of this section, we first
define the direct encoding and the support encoding, and then define a new
encoding from CSP into SAT called minimal support encoding.

3.1 Direct encoding and support encoding

In the direct encoding, we associate a Boolean variable xij with each value j
that can be assigned to the CSP variable Xi. Assuming that Xi has a domain of
size m, the direct encoding contains clauses that ensure that each CSP variable
Xi is given a value: for each i, xi1 ∨ · · · ∨ xim (called at-least-one clauses), and
contains clauses that rule out any binary nogoods. For example, if X1 = 2 and
X3 = 1 is not allowed, then the clause x12 ∨x31 (called conflict clause) is added.
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We consider the version of the direct encoding that adds clauses that ensure
that each CSP variable Xi takes no more than one value: for each i, j, k with
j < k, xij∨xik (called at-most-one clauses). These clauses are redundant, but are
considered in the literature in order to maintain a one-to-one mapping between
CSP models and SAT models.

In the support encoding, the idea is to encode into clauses the support for a
value instead of encoding conflicts. The support for a value j of a CSP variable
Xi across a constraint is the set of values of the other variable in the constraint
which allow Xi = j. If v1, v2, . . . , vk are the supporting values of variable Xl for
Xi = j, we add the clause xij∨xlv1

∨xlv2
∨· · ·∨xlvk

(called support clause). There
is one support clause for each pair of variables Xi, Xl involved in a constraint,
and for each value in the domain of Xi. Unlike conflict clauses, a clause in each
direction is used in the literature, one for the pair Xi, Xl and one for Xl, Xi.
The support clauses on their own do not provide a correct encoding of CSPs
into SAT. To complete an encoding using support clauses we need to add the
at-least-one and at-most-one clauses for each CSP variable to ensure that each
CSP variable takes exactly one value of its domain.

Example 1. The direct encoding of the CSP 〈X ,D, C〉 = 〈{X, Y }, {d(X) =
{1, 2, 3}, d(Y ) = {1, 2, 3}}, {X ≤ Y }〉 contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3

conflict x2 ∨ y
1

x3 ∨ y
1

x3 ∨ y
2

and the support encoding for that CSP contains the at-least-one clauses, the
at-most-one clauses, and the following support clauses:

support x2 ∨ y2 ∨ y3 y
1
∨ x1

x3 ∨ y3 y2 ∨ x1 ∨ x2

The support clause for x1 is missing because it is subsumed by y1 ∨ y2 ∨ y3, and
the support clause for y3 is missing because it is subsumed by x1 ∨ x2 ∨ x3.

3.2 Minimal support encoding

Our first contribution in this paper is to give a new version of the support
encoding, which we call minimal support encoding. Our definition follows from
the observation that the support encoding contains redundant clauses. More
precisely, given a binary constraint Ck with scope {X, Y }, it is enough to add
the support clauses either for the values of X or for the values of Y ; it is not
necessary to add a clause in each direction. Despite of the number of papers
dealing with the support encodings, this fact has gone unnoticed so far.

Definition 6. The minimal support encoding is like the support encoding except
for the fact that, for every constraint Ck with scope {X, Y }, we only add either
the support clauses for all the domain values of the CSP variable X or the support
clauses for all the domain values of the CSP variable Y .
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Example 2. A minimal support encoding for the CSP instance from Example 1
contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3

support x2 ∨ y2 ∨ y3 x3 ∨ y3

Proposition 1. The minimal support encoding is correct.

Proof: We assume, without loss of generality, that we add the support clauses
for all the domain values of the CSP variable X for every constraint Ck with
scope {X, Y }. Given a CSP assignment, we construct its corresponding Boolean
assignment by setting the variable xi to true if the CSP assignment assigns
the value i to X ; otherwise, we set the variable xi to false. Given a Boolean
assignment that satisfies the minimal support encoding of a CSP, we construct its
corresponding CSP assignment by assigning to the CSP variable X the value i if
xi is true. Note that there is exactly one xi for each CSP variable X which is true
because the minimal support encoding contains the at-least-one and at-most-one
clauses. So, it is a valid CSP assignment.

We prove first that if a CSP assignment satisfies all the constraints of a
CSP instance, then its corresponding Boolean assignment satisfies its minimal
encoding. Since a CSP assignment assigns exactly one value to each CSP variable,
the Boolean assignment satisfies the at-least-one and at-most-one clauses. For
every constraint Ck with scope {X, Y }, the CSP assignment assigns a value i to
X and a value j to Y . Since (X = i, Y = j) is an allowed combination, among
the clauses encoding that constraint, there is a clause of the form xi ∨ yj ∨ · · ·
which is satisfied by the Boolean encoding because yj is true. The remaining
clauses are also satisfied by the Boolean assignment because they are of the
form xl ∨ · · · , where l 6= i, and the Boolean assignment assigns the value false
to all variables xl with l 6= i.

We prove now that if a Boolean assignment satisfies the minimal support
encoding of a CSP instance P , then its corresponding CSP assignment satisfies
P . Assume that the CSP assignment does not satisfy P . Therefore, there exists
a constraint Ck of P with scope {X, Y } which is violated because the CSP
assignment assigns a value i to X and a value j to Y which corresponds to a
forbidden combination. In this case, there is exactly one support clause of the
form xi ∨ yj1 ∨ · · · ∨ yjk

among the support clauses encoding Ck which is not
satisfied by the Boolean assignment because xi is true and yj1 6= yj , . . . , yjk

6= yj .
The rest of support clauses encoding Ck are satisfied by the Boolean assignment
because it assigns the value false to all variables xl with l 6= i.

Unlike the support encoding [11, 13], the minimal support encoding does
not maintain arc consistency through unit propagation. Recall that the direct
encoding does not maintain arc consistency too.

Proposition 2. The minimal support encoding does not maintain arc consis-
tency through unit propagation.
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Proof: We give a counterexample to prove the proposition. Given the CSP
instance 〈X ,D, C〉, where X = {X, Y }, d(X) = d(Y ) = {1, 2, 3}, C = {CXY } =
{{(1, 1), (2, 2), (3, 3)}} with the following minimal support encoding:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y
1
∨ y

2
y
1
∨ y

3
y
2
∨ y

3

support x1 ∨ y1 x2 ∨ y2 x3 ∨ y3,

if x1 is set to false, then y1 is not derived by unit propagation, and the domain of
Y is not arc consistent. Observe that if the support clauses are y1∨x1, y2∨x2, y3∨
x3, then y1 is derived by unit propagation, and the domain of Y becomes arc
consistent. However, if y1 is set to false, then arc consistency is not maintained
in the last case.

4 Encoding Max-CSP into Partial Max-SAT

4.1 Direct encoding for Partial Max-SAT

Given a CSP instance P , our goal is to define a version of the direct encoding
that produces a partial Max-SAT instance φ such that the minimum number of
constraints of P that are violated by a CSP assignment is exactly the same as
the minimum number of clauses of φ that are falsified by a Boolean assignment.

Definition 7. The direct encoding of a Max-CSP instance 〈X ,D, C〉 is the
Partial Max-SAT instance that contains as hard clauses the corresponding
at-least-one and at-most-one clauses for every CSP variable in X , and contains
a soft clause xi ∨ yj for every nogood (X = i, Y = j) of every constraint of C
with scope {X, Y }.

Example 3. The Partial Max-SAT direct encoding for the Max-CSP problem of
the CSP instance from Example 1 is as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
conflict (x2 ∨ y

1
) (x3 ∨ y

1
) (x3 ∨ y

2
)

Proposition 3. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its direct encoding.

Proof: The hard clauses ensure that exactly one of the Boolean variables that
encode a CSP variable is true and the rest are false in a feasible assignment.
Therefore, we have that there is a one-to-one mapping between the set of CSP
assignments and the set of feasible assignments of the Partial Max-SAT instance
and, moreover, at most one of the conflict clauses that encode a certain con-
straint can be falsified by a feasible assignment. If the CSP assignment satisfies
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a constraint, then the corresponding Boolean assignment also satisfies the con-
flict clauses that encode that constraint because there is no clause forbidding
allowed values. If the CSP assignment violates a constraint, then the corre-
sponding Boolean assignment does not satisfy the conflict clause that encodes
the forbidden values of the two variables involved in the constraint, and satisfies
the remaining clauses.

There are other options for defining the direct encoding which amount to
introducing auxiliary variables. For example, you can add all the clauses repre-
senting nogoods as hard clauses by adding an auxiliary literal ci to every clause
encoding a nogood of every constraint Ci ∈ C, and adding the unit clause ci as
a soft clause. Nevertheless, we do not consider this encoding because we realized
that its performance profile is worse than the performance profile of the direct
encoding (at least for the benchmarks considered in our empirical evaluation).

4.2 Support encoding for Partial Max-SAT

The support encoding for Partial Max-SAT may be defined by adapting the
minimal support encoding from CSP into SAT:

Definition 8. The minimal support encoding of a Max-CSP instance 〈X ,D, C〉
is the Partial Max-SAT instance that contains as hard clauses the corresponding
at-least-one and at-most-one clauses for every CSP variable in X , and contains
as soft clauses the support clauses of the minimal support encoding from CSP
into SAT.

Example 4. A minimal Partial Max-SAT support encoding for the Max-CSP
problem of the CSP instance from Example 1 contains the following clauses:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3) (x3 ∨ y3)

Proposition 4. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its minimal support encoding.

Proof: Proposition 1 proves that there is one unsatisfied clause for every vi-
olated constraint. Since the minimal support encoding is correct, and the hard
clauses ensure a one-to-one mapping between Max-CSP and feasible Partial Max-
SAT assignments, the optimal solutions of Max-CSP are exactly the same as the
optimal solutions of Partial Max-SAT.

We now define how to adapt to Partial Max-SAT the support encoding from
CSP into SAT.

Definition 9. The support encoding of a Max-CSP instance 〈X ,D, C〉 is the
Partial Max-SAT instance that contains as hard clauses the corresponding
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at-least-one and at-most-one clauses for every CSP variable in X , and con-
tains, for every constraint Ck ∈ C with scope {X, Y }, a soft clause of the form
SX=j ∨ ck for every support clause SX=j encoding the support for the value j of
the CSP variable X, where ck is an auxiliary variable , and contains a soft clause
of the form SY =m ∨ ck for every support clause SY =m encoding the support for
the value m of the CSP variable Y .

Observe that we introduce an auxiliary variable for every constraint. This
is due to the fact that there are two unsatisfied soft clauses for every violated
constraint of the Max-CSP instance if we do not introduce auxiliary variables.
It is particularly important to have one unsatisfied clause for every violated
constraints when mapping weighted Max-CSP instances into weighted Max-SAT
instances.1 In this case, all the clauses encoding a certain constraint have as
weight the weight associated to that constraint. When a constraint is violated
with weight w, this guarantees that there is exactly one unsatisfied clause with
weight w.

Example 5. The Partial Max-SAT support encoding for the Max-CSP problem
of the CSP instance from Example 1 is as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3 ∨ c1) (y1 ∨ x1 ∨ c1)

(x3 ∨ y3 ∨ c1) (y2 ∨ x1 ∨ x2 ∨ c1)

Proposition 5. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its support encoding.

Proof: By introducing auxiliary variables we ensure that the optimal solutions
of Max-CSP are exactly the same as the optimal solutions of Partial Max-SAT.
The auxiliary variables allow to violate exactly one clause for every violated
constraint.

In the following proposition we assume that Partial Max-SAT solvers incor-
porate the rule that replaces any two complementary unit clauses with an empty
clause. Actually, most of the solvers we know implement such a rule.

Proposition 6. When solving a Max-CSP instance with the support encoding
on a Partial Max-SAT solver, it is not necessary to branch on the auxiliary
variables.

Proof: For every violated constraint Ck with scope {X, Y }, there is exactly
one unsatisfied support clause of the form xi ∨ yj1 ∨ · · · ∨ yjk

and one unsatisfied
support clause of the form yl ∨ xm1

∨ · · · ∨ xms
in the support encoding from

1 In weighted Max-CSP (Max-SAT), each constraint (clause) has a weight and the goal
is to minimize the sum of the weights of the violated constraints (falsified clauses).
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CSP into SAT. Therefore, these clauses will produce the derivation of the two
complementary unit clauses in the support encoding from Max-CSP into Partial
Max-SAT: ck (from xi∨yj1∨· · ·∨yjk

∨ck) and ck (from yl∨xm1
∨· · ·∨xms

∨ck). The
solver will then derive a contradiction from these two clauses. If Ck is satisfied,
both support clauses are satisfied and the fact of adding an extra literal does
not affect their satisfaction.

On the solved benchmarks we did not see significant differences between
branching including auxiliary variables and branching without including them.
So, we only report results for branching including auxiliary variables. However,
there may exist differences on other types of instances and solvers.

5 Experimental results

We conducted an empirical evaluation to assess the impact of the defined encod-
ings on the performance of two of the best performing Partial Max-SAT solvers:
MiniMaxSat [12] and PMS [3]. Moreover, we compared the support encoding
and the minimal support encoding when solving SAT-encoded CSP instances
with MiniSat [7] and zChaff [20]. The evaluation was conducted on a cluster
with 160 2 GHz AMD Opteron 248 Processors with 1 GB of memory.

As benchmarks we considered binary CSPs, which were obtained with a
generator of uniform random binary CSPs2 —designed and implemented by
Frost, Bessière, Dechter and Regin— that implements the so-called model B: in
the class 〈n, d, p1, p2〉 with n variables of domain size d, we choose a random
subset of exactly p1n(n−1)/2 constraints (rounded to the nearest integer), each
with exactly p2d

2 conflicts (rounded to the nearest integer); p1 may be thought
of as the density of the problem and p2 as the tightness of constraints. The
difficulty of the instances depends on the selected values for n, d, p1 and p2. We
selected values that allowed to solve the instances in a reasonable amount of
time in each solver.

We used the following encodings: the direct encoding (dir), the support
encoding (supxy), and three variants of the minimal support encoding (supx,
supl, supc). The encoding supx refers to the minimal support encoding of a
binary CSP containing only the support clauses for the CSP variable X and not
for the variable Y for every constraint with scope {X, Y }; we do not show results
for the encoding containing only support clauses for the CSP variable Y because
its behaviour is very close to supx for the solved random instances. The encoding
supl refers to the minimal support encoding containing, for each constraint,
the support clauses for the variable that produces a smaller total number of
literals. The encoding supc refers to the minimal support encoding containing,
for each constraint, the support clauses for the variable that produces smaller size
clauses; we give a score of 16 to unit clauses, a score of 4 to binary clauses and a
score of 1 to ternary clauses, and choose the variable with higher sum of scores.
For instance, given the CSP instance 〈X, D, C〉, where X = {X, Y }, d(X) =

2 http://www.lirmm.fr/˜bessiere/generator.html
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d(Y ) = {1, 2, 3, 4}, C = {CXY } = {{(1, 2), (1, 3), (1, 4)}}, supc prefers three
binary support clauses x1∨y2, x1∨y3, x1∨y4 rather than the quaternary support
clause x1 ∨ y2 ∨ y3 ∨ y4, while supl prefers x1 ∨ y2 ∨ y3 ∨ y4.
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In the first experiment we solved 100 CSP instances with MiniSat and zChaff
for each data point. We compared all the support encodings from CSP into SAT.
With MiniSat, we solved CSP instances with 35 variables, domains of 15 ele-
ments, 305 constraints and variable tightness (we vary the number of nogoods
(ng)). The obtained results are shown in Figure 1. With zChaff, we solved CSP
instances with 45 variables, domains of 10 elements, 415 constraints and variable
tightness. The obtained results are shown in Figure 2. We observe that the sup-
port encoding outperforms the three variants of the minimal support encoding.
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We believe that this is due to the fact that the support encoding, unlike the
minimal support encoding, maintains arc consistency through unit propagation.

In the second experiment we solved 100 Max-CSP instances with MiniMaxSat
for each data point; the instances had 22 variables, domains of 4 elements, 231
constraints and variable tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The obtained results are shown in Figure 3.

In the third experiment we solved 100 Max-CSP instances with MiniMaxSat
for each data point; the instances had 25 variables, domains of 5 elements, 150
constraints and variable tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The obtained results are shown in Figure 4.
We omit the results for the encodings dir and supxy because they are not
competitive.

In the fourth experiment we solved 100 Max-CSP instances with PMS for
each data point; the instances had 15 variables, domains of 4 elements, 120
constraints and variable tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The obtained results are shown in Figure 5.

In the fifth experiment we solved 100 Max-CSP instances with PMS for each
data point; the instances had 14 variables, domains of 5 elements, 91 constraints
and variable tightness. We compared all the defined encodings of Max-CSP into
Partial Max-SAT. The obtained results are shown in Figure 6.

We observe that support encodings from Max-CSP into Partial Max-SAT,
which have been introduced for the first time in this paper, outperform the
direct encoding for both solvers. In MiniMaxSat, the best performing encoding
is the minimal support encoding. Among the different versions of the minimal
support encoding, we observe that supc is up to 6 times faster than the other
two encodings (supx and supl). In PMS, the best encoding for high values of
tightness is the support encoding while the best encodings for lower values are
supc and supl in Figure 5, and supl in Figure 6.

Finally, in Table 1 we show, for each different encoding, the average number
of clauses of some sets of Max-CSP instances solved in the third experiment
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(Figure 4) in order to illustrate the differences on the number of clauses among
all the defined encodings from Max-CSP into Partial Max-SAT. Observe that
encodings supx, supl and supc produce instances with a similar number of
clauses.

Parameters dir supxy supx supc supl

〈25, 5, 150, 2〉 575 824 551 549 524

〈25, 5, 150, 4〉 875 1201 738 720 685

〈25, 5, 150, 6〉 1175 1445 861 826 804

〈25, 5, 150, 8〉 1475 1602 939 905 890

〈25, 5, 150, 10〉 1775 1690 983 959 950

〈25, 5, 150, 12〉 2075 1739 1007 993 991

〈25, 5, 150, 14〉 2375 1762 1019 1012 1012

〈25, 5, 150, 16〉 2675 1771 1023 1021 1021

〈25, 5, 150, 18〉 2975 1774 1025 1024 1024

〈25, 5, 150, 20〉 3275 1775 1025 1025 1025

Table 1. Number of clauses for different encodings

6 Conclusions

We have defined the minimal support encoding, which is a new encoding from
CSP into SAT, and a number of original encodings (dir, supxy, supx, supl,
supc) that map Max-CSP instances into partial Max-SAT instances, and have
provided experimental evidence that different Max-SAT encodings for a given
optimization problem may produce substantial differences on the performance
of a solver. Since our mappings produce one unsatisfied clause for every violated
constraints, they can be easily extended to mappings from weighted Max-CSP
instances into weighted Max-SAT instances; all the clauses encoding a certain
constraint should have as weight the weight associated to that constraint.

To the best of our knowledge, this is the first paper that addresses the ques-
tion of how to encode Max-CSP into Max-SAT, and analyzes the impact of
modelling on the performance of Max-SAT solvers. Future research directions
include analyzing the degree of soft local consistency achieved by each encoding,
conducting an experimental investigation with benchmarks other than random
binary Max-CSP instances, and generalizing our results to n-ary constraints.
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