
Generic ILP vs Specialized 0-1 ILP
for Haplotype Inference

Ana Graça1, Inês Lynce1, João Marques-Silva2, and Arlindo L. Oliveira1

1 IST/INESC-ID, Technical University of Lisbon, Portugal
{assg,ines}@sat.inesc-id.pt,aml@inesc-id.pt

2 School of Electronics and Computer Science, University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract. Haplotype inference is an important and computationally challenging
problem in genetics. A well-known approach to haplotype inference is pure par-
simony (HIPP). Despite being based on a simple optimization criterion, HIPP is
a computationally hard problem. Recent work has shown that approaches based
on Boolean satisfiability namely pseudo-Boolean optimization (PBO), are very
effective at tackling the HIPP problem. Extensive work on PBO-based HIPP ap-
proaches has been recently developed. Considering that the PBO problem, also
known as 0-1 ILP problem, is a particular case of the integer linear programming
(ILP) problem, generic ILP solvers can be considered. This paper compares the
performance of PBO and ILP solvers on a variety of HIPP models. We conclude
that specialized PBO solvers are more suitable than generic ILP solvers.

1 Introduction

Understanding genetic differences between human beings is a crucial step towards the
diagnosis and prevention of genetic diseases. Haplotype inference is a key problem to
solve for achieving this goal, since haplotypes include most of the information about
human genetic variations. A well-known haplotype inference approach is the pure par-
simony (HIPP) which, among the possible solutions, chooses the one with the smallest
number of distinct haplotypes [7].

Former work on the HIPP problemwas mainly based on integer linear programming
(ILP) [7, 2, 3]. Afterwards, Boolean satisfiability (SAT) [9] and pseudo-Boolean opti-
mization (PBO) [5] have been used to solve the problem. Recently, PBO HIPP-based
approaches have been improved, generating further reduced models [6]. Considering
that PBO is a particular case of ILP, existing PBO models can also be solved by generic
ILP solvers.

This work compares the performance of different HIPP models described in the
literature [2, 5, 6], using different PBO solvers [11, 10, 4, 1] and the generic ILP solver
CPLEX. To the best of our knowledge, such a comparison has never been made in the
past. This paper aims at performing a comprehensible evaluation of different models
and solvers. The analysis of the experimental results gives insights to select the most
appropriate modelling techniques depending on the kind of solver being used.

The paper is organized as follows. The next section describes the HIPP problem.
Section 3 details recent PBO HIPP models, namely RPoly [5] and the recent improve-
ments to the model [6]. Afterwards, on section 4, experimental results comparing ILP

2 A. Graça et al.

and PBO approaches to the HIPP problem are presented. Finally, the paper concludes
in section 5.

2 Haplotype Inference by Pure Parsimony

Single nucleotide polymorphisms (SNPs) correspond to sites in the DNA sequence
where mutations have occurred and which represent a significant variability on the pop-
ulation. Haplotypes can be seen as a sequence of SNPs highly correlated, within a single
chromosome. It is technically difficult to obtain haplotypes directly. Instead, genotypes,
which correspond to the mixed data of two haplotypes on homologous chromosomes,
are experimentally obtained. The haplotype inference problem consists in finding the
set of haplotypes which originated a given set of genotypes.

Considering that mutations are rare, we may assume that each SNP can only have
two values. Each haplotype is therefore represented by a binary string with sizem ∈ N,
where 0 represents the wild type and 1 represents the mutant type. Each site of the
haplotype hi is represented by hij (1 ≤ j ≤ m). Each genotype is represented by
a string, with size m, over the alphabet {0, 1, 2}, and each site of the genotype gi is
represented by gij . Each genotype is explained by two haplotypes. A genotype gi ∈ G
is explained by a pair of haplotypes (ha

i ,hb
i) such that

gij =

{

ha
i j if ha

i j = hb
i j

2 if ha
i j #= hb

i j

, (1)

with 1 ≤ j ≤ m. A genotype site gij with either value 0 or 1 is a homozygous site,
whereas a site with value 2 is a heterozygous site.

Definition 1. Given a set G of n genotypes each with size m, the haplotype inference
problem consists in finding a set of haplotypes H, such that each genotype gi ∈ G is
explained by two haplotypes ha

i , hb
i ∈ H.

For each genotype g with k heterozygous sites, there are 2k−1 pairs of haplotypes
that can explain g. For example, genotype gi = 202 can be explained either by hap-
lotypes (000,101) or by haplotypes (001,100). Several approaches to the haplotype in-
ference problem have been suggested. Given that individuals from the same population
share many haplotypes, the pure parsimony approach searches for a solution with the
smallest number of distinct haplotypes.

Definition 2. The haplotype inference by pure parsimony (HIPP) problem consists in
finding a solution to the haplotype inference problem which minimizes the number of
distinct haplotypes [7].

Example 1. Consider the set of genotypes G: g1 = 022, g2 = 221 and g3 = 222.
There are solutions using 6 different haplotypesH1: ha

1 = 001, hb
1 = 010, ha

2 = 011,
hb

2 = 101, ha
3 = 000 and hb

3 = 111. However the HIPP solution only requires 4 distinct
haplotypesH2: ha

1 = 011, hb
1 = 000, ha

2 = 011, hb
2 = 101, ha

3 = 011 and hb
3 = 100.

It has been shown that the HIPP problem is NP-hard [8].

Generic ILP vs Specialized 0-1 ILP for Haplotype Inference 3

3 ILP/PBO-based HIPP Models

With a few notable exceptions [12], early work on the HIPP problem used models based
on integer linear programming [7, 2, 3]. The original ILPmodel, RTIP [7], has exponen-
tial space complexity on the number of heterozygous sites because, in the worst case,
it requires the enumeration of all possible pairs of haplotypes that can explain each
genotype. Afterwards, two polynomial ILP models, PolyIP [2] and HybridIP [3], were
proposed 1.

Recently, a very competitive SAT-based approach, SHIPs [9], suggested an incre-
mental algorithm that, starting from a clique-based lower bound on the number of re-
quired haplotypes, models the problem into SAT and searches for a HIPP solution. If
no solution is found, the lower bound is incremented by one and a new SAT instance
is generated. When a solution is found, the minimum number of haplotypes is given by
the value of the lower bound. More recent approaches use pseudo-Boolean optimiza-
tion models [5, 6]. These models represent an improvement in terms of the efficiency of
HIPP solvers.

The Reduced Poly model (RPoly) [5] proposed a number of simplifications to the
Poly model. The RPoly model associates two haplotypes (ha

i , hb
i) with each genotype

gi, for 1 ≤ i ≤ n. A variable tij is associated with each heterozygous site gij , such that
tij = 1 if ha

ij = 1 and hb
ij = 0, whereas tij = 0 if ha

ij = 0 and hb
ij = 1.

Another key issue in the RPoly’s formulation is the notion of incompatibility. Two
genotypes are incompatible if they cannot be explained by a common haplotype, or
equivalently, genotypes gi and gk, are incompatible if there exists j (1 ≤ j ≤ m) such
that gij + gkj = 1. Otherwise, they are said to be compatible. For candidate haplotypes
h

p
i and h

q
k, with p, q ∈ {a, b} and 1 ≤ k < i ≤ n, a variable x

p q
i k is defined, such that,

x
p q
i k = 1 if haplotype h

p
i of genotype gi and haplotype h

q
k of genotype gk are different.

If two genotypes are incompatible, then they cannot share an explaining haplotype, and
consequently, for the four possible combinations of p and q, xp q

i k = 1.
Finally, in order to count the number of distinct haplotypes used, variables u

p
i are

defined such that up
i = 1 if haplotype h

p
i , which explains genotype gi, is different from

all the haplotypes which explain genotypes gk, with k < i. The conditions on variables
u

p
i are

∑

1≤k<i ; q∈{a,b}

xp q
i k − up

i ≤ 2i − 3, (2)

with p ∈ {a, b} and 1 ≤ i ≤ n. The objective function minimizes the sum of variables
up

i .
An improved RPoly model was recently proposed [6]. This new model, NRPoly, in-

tegrates the SHIPs clique-based lower bound in the RPoly model and extends the model
with additional constraints. The components of the SHIPs lower bound allow both fix-
ing the value of some of the u

p
i variables and also avoiding generating the constraints

involving fixed u
p
i variables [9]. Moreover, the order in which the genotypes are con-

sidered must reflect the order in which the genotypes are used in the lower bound [6]. In

1 Throughout the paper we will remove the suffix IP and use only Poly and Hybrid.

4 A. Graça et al.

practice, the integration of SHIP’s lower bound allows fixing the value of many u
p
i vari-

ables and, as several constraints need not be generated, allows significantly reducing
the size of the model.

The second optimization is related with a key simplification of the RTIP model,
which consists in not considering pairs of haplotypes when both of them do not explain
more than one genotype. Actually, if a genotype gi is not incompatible with all other
genotypes, then at least one of the haplotypes that explain gi must explain other geno-
type. For each genotype gi ∈ G compatible with at least one more genotype in G, the
following constraint is generated,

∑

k>i ; p,q∈{a,b} ; κ(k,i)

x
p q
k i + ua

i + ub
i ≤ 4K + 1, (3)

where predicate κ(k, i) is defined true if gk and gi are compatible and K is the cardi-
nality of the set {gk ∈ G : k > i ∧ κ(k, i)}.

The last optimization consists in adding cardinality constraints on the values of
variables x. For many combinatorial problems, adding cardinality constraints to the
model can prune the search space, helping the solver to find a solution. Clearly, two
different genotypes gi and gk cannot be explained by the same pair of haplotypes, and
then gi and gk can be at most explained by one haplotype in common. Therefore, for
each pair of distinct genotypes gi and gk (k < i), if gi and gk are compatible and
non-homozygous, then

∑

p,q∈{a,b}

x
p q
i k ≥ 3. (4)

4 Generic ILP vs Specialized 0-1 ILP for the HIPP problem

In this section we compare the relative performance of discrete optimization HIPP mod-
els using different 0-1 ILP solvers and a generic ILP solver. A considerable number of
HIPP models and solvers are evaluated. To the best of our knowledge, such comparation
has never been performed so far.

4.1 Experimental Setup

An extensive evaluation, using 1183 problem instances [5] including real and synthetic
data, has been performed. The solvers used were MiniSat+ [4], Pueblo [11] version 1.5,
the latest version of BSOLO [10], PBS4 [1], glpPB release 0.2 and CPLEX version
11.0 (www.ilog.com/products/cplex/). The results were obtained on an Intel Xeon 5160
server (3.0GHz, 4MB RAM) running Red Hat Enterprise Linux WS 4. The timeout for
each instance was set to 1000 seconds.

4.2 Results

The Poly, RPoly and NRPoly models were adapted to be run by the five different 0-1
ILP solvers (Minisat+, Pueblo, BSOLO, PBS4 and glpPB) and the generic ILP solver

Generic ILP vs Specialized 0-1 ILP for Haplotype Inference 5

Table 1. Number of instances aborted (out of 1183) for each model and solver (timeout 1000s)

PBO solver ILP Solver
Model MiniSat+ Pueblo BSOLO PBS4 glpPB CPLEX
Poly 82 251 486 605 1091 705
RPoly 36 127 290 326 723 234
NRPoly 18 55 120 108 611 249

Table 2. Number of instances aborted (out of 1183) using CPLEX, on each ILP model (timeout
1000s)

Model RTIP Poly Hybrid RPoly NRPoly
aborted 378 707 717 234 249

CPLEX. All solvers are then being evaluated on exactly the same models. Table 1 pro-
vides a summary of the results obtained, with the number of instances aborted (out of
1183) for each model.

Clearly, the best performing solver for each of the three models is MiniSat+. In
general, MiniSat+, Pueblo, BSOLO and PBS4 solvers outperform CPLEX. The only
exception is with the RPoly model, where CPLEX solves more instances than both
BSOLO and PBS4.

For the results shown, the Poly model used is a re-implementation of the model
described in [2]. The original Poly model gives similar results, aborting 707 instances
instead of the 705 shown, using CPLEX. Even though the original Poly model was
developed to be solved using CPLEX, the results suggest that most of the specialized
0-1 ILP solvers perform better for this model.

The glpPB solver is the worst performing solver for each of the three models (Poly,
RPoly, NRPoly). glpPB is a ILP-based pseudo-Boolean solver, that uses the GNU linear
programming kit (GLPK, www.gnu.org/software/glpk/). Hence, the glpPB ILP-based
solver implements some of the techniques also used by CPLEX, but glpPB is not as
optimized as CPLEX.

For all PBO solvers, NRPoly is shown to be more robust than the previous RPoly
model. Solving the NRPoly model using MiniSat+, Pueblo, BSOLO or PBS4, reduces
at least by 50% the number of instances not solved within 1000 seconds. Using the
glpPB solver , the number of aborted instances is reduced in 15%. However, the generic
ILP solver, CPLEX, does not benefit from the techniques introduced in the new model.
Indeed, the NRPoly model aborts 15 instances more than the RPoly model, using
CPLEX.

Table 2 summarizes the number of aborted instances for each model using CPLEX.
For RTIP, Poly and Hybrid the same code used in [3], developed to be used with
CPLEX, has been run. The RPoly and NRPoly models were adapted to be run by
CPLEX. The number of instances aborted by the most recent models, RPoly and NR-
Poly, is much smaller than the number of instances aborted by the previous models,
confirming that the new models are more robust. However, as already mentioned be-

6 A. Graça et al.

Table 3. Number of instances aborted (out of 1183) by each version of NRPoly model using
CPLEX

Model RPoly NRPoly v1 NRPoly v2 NRPoly
aborted 234 258 257 249

fore, the most recent model, NRPoly, does not perform as well as the RPoly model, in
contrast with PBO solvers.

In order to understand whether NRPoly performs worse than RPoly due to a par-
ticular feature of the NRPoly model, we analyzed the performance of NRPoly for each
additional new technique included in this model. Table 3 presents the number of aborted
instances for each NRPoly version.We callNRPoly v1 to the version that only integrates
the lower bound of SHIPs. NRPoly v2 corresponds to the version with the lower bound
of SHIPs and cardinality constraints on the x variables. The final version, that includes
also the RTIP pruning, is simply NRPoly. As can be concluded, the integration of the
lower bound of SHIPs is the reason why NRPoly performs worse than RPoly (24 more
instances are aborted) when using CPLEX. In fact, both the integration of cardinality
constraints and the RTIP pruning have been shown to help the CPLEX solver.

Finally, figure 1 provides a plot comparing RPoly using either MiniSat+ or CPLEX,
and NRPoly using either MiniSat+ or CPLEX 2. RPoly with MiniSat+ is more efficient
than RPoly with CPLEX (36 vs. 234 aborted instances) and NRPoly with MiniSat+
is more efficient than NRPoly with CPLEX (18 vs. 249 aborted instances). The set of
instances aborted usingMiniSat+ is a subset of instances aborted by CPLEX. This result
is not surprising given that Poly with MiniSat+ has been shown in the past to be more
efficient than Poly with CPLEX [5]. However, taking into account that the two versions
of Poly were not implemented by the same authors, this new comparison was deemed
necessary.

5 Conclusions

This paper analyzes the performance of different generic and specialized ILP solvers on
recently proposedHIPP models. Our experiments show that the SAT-based PBO solvers
are, in general, more suitable than the state of the art generic ILP solver CPLEX. The
experimental results confirm that the poor performance of CPLEX is a consequence of
the ILP techniques used. Similar conclusions can be drawn for the ILP-based glpPB
solver, which is the worst-performing ILP solver for the HIPP problem. glpPB uses
some of the techniques used by CPLEX, but is significantly less optimized. Moreover,
the results for CPLEX and glpPB suggest that similar results would be obtained in case
a different ILP solver was considered.

Our conclusion is that, for the HIPP case and probably for other problems which
can be naturally formulated as a 0-1 ILP problem, specific PBO solvers should be con-
2 Each point in the plot corresponds to a problem instance, where the x-axis corresponds to
the CPU time required by MiniSat+ and the y-axis corresponds to the CPU time required by
CPLEX.

Generic ILP vs Specialized 0-1 ILP for Haplotype Inference 7

10
−3

10
0

10
3

10
−3

10
0

10
3

C
PL
EX

tim
e
(s
)

MiniSat+ time (s)

RPoly

10
−3

10
0

10
3

10
−3

10
0

10
3

C
PL
EX

tim
e
(s
)

MiniSat+ time (s)

NRPoly

Fig. 1. CPU time results for RPoly and NRPoly

sidered. Furthermore, we observe that some modeling techniques used to optimize the
PBO approaches do not produce improvements when the ILP solver CPLEX is used.

Acknowledgments

This work is partially supported by Fundação para a Ciência e Tecnologia under re-
search projects SATPot (POSC/EIA/61852/2004) and SHIPs (PTDC/EIA/64164/2006)
and PhD grant SFRH/BD/28599/2006, and by Microsoft under contract 2007-017 of
the Microsoft Research PhD Scholarship Programme.

References

1. F. Aloul, A. Ramadi, I. Markov, and K. Sakallah. Generic ILP versus specialized 0-1 ILP:
an update. In Proc. IEEE/ACM International Conference on Computer-Aided Design, pages
450–457, 2002.

2. D. Brown and I. Harrower. A new integer programming formulation for the pure parsimony
problem in haplotype analysis. In Workshop on Algorithms in Bioinformatics (WABI’04),
pages 254–265, 2004.

3. D. Brown and I. Harrower. Integer programming approaches to haplotype inference by
pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(2):141–154, 2006.

4. N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

5. A. Graça, J. Marques-Silva, I. Lynce, and A. Oliveira. Efficient haplotype inference with
pseudo-Boolean optimization. In Algebraic Biology 2007 (AB’07), pages 125–139, 2007.

6. A. Graça, J. Marques-Silva, I. Lynce, and A. Oliveira. Efficient haplotype inference with
combined CP and OR techniques (short paper). In 5th International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial Problems
(CPAIOR’08), 2008. Accepted for publication.

8 A. Graça et al.

7. D. Gusfield. Haplotype inference by pure parsimony. In 14th Annual Symposium on Combi-
natorial Pattern Matching (CPM’03), pages 144–155, 2003.

8. G. Lancia, C. M. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony:
complexity of exact and approximation algorithms. INFORMS Journal on Computing,
16(4):348–359, 2004.

9. I. Lynce and J. Marques-Silva. Efficient haplotype inference with Boolean satisfiability. In
National Conference on Artificial Intelligence (AAAI), 2006.

10. V. Manquinho and J. Marques-Silva. Effective lower bounding techniques for pseudo-
Boolean optimization. In Design, Automation and Test in Europe Conference and Exhibition
(DATE’05), pages 660–665, 2005.

11. H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation, 2:165–189, 2006.

12. L. Wang and Y. Xu. Haplotype inference by maximum parsimony. Bioinformatics,
19(14):1773–1780, 2003.

