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Abstract

When given a combinatorial problem, one has two
major tasks: to model the problem and to solve the
selected model. Whilst much work in SAT algo-
rithms is for building efficient solvers, we argue
that many modeling decisions have a direct im-
pact on the solvers performance. We focus on a
particular combinatorial problem: the social golfer
problem, and we show how to encode this problem
into SAT. An important feature of the social golfer
problem is the presence of symmetries, which can
be tackled by adding more clauses to the encod-
ing. Our empirical evaluation shows that different
encodings can improve or degrade search dramati-
cally depending on the solver. We also show empir-
ically that by choosing the right encoding one may
exploit the heavy-tail behavior.

1 Introduction
Recent years have seen remarkable progress in propositional
satisfiability (SAT), with significant theoretical and practical
contributions. Indeed, SAT solvers can currently be used to
solve hard benchmark problems. State-of-the-art SAT solvers
(e.g. [Moskewicz et al., 2001; Goldberg and Novikov, 2002;
Een and Sorensson, 2003; Kautz et al., 2004; Ryan, 2004]),
are with no doubt very competitive. And every year a new
SAT competition is run with new solvers and new bench-
marks. All solvers and benchmarks are classified according
to three categories: industrial, handmade and random. Every
year, almost all the previous year winners for each category
are beaten by a new, more efficient solver. Also, the new
solvers are able to solve part of the benchmark problems that
were not solved in the previous year in a reasonable amount
of time.

The progress in SAT solving has attracted the attention
of researchers that usually use other technologies to solve
their problems. Encoding problems in CNF format and solv-
ing them with SAT solvers is indeed a competitive approach.
SAT has the advantage of being very easy in its formulation.
Nonetheless, the simplicity of the CNF format makes its use
very restrictive. For example, a constraint problem with a few
dozen of variables may result in a SAT problem with thou-
sands of variables and millions of clauses. Also, one may ar-

gue that a cause of inefficiency is the loss of structure during
problem reductions.

Even though the SAT community is extremely motivated
for continuously improving SAT solvers performance, there
is much to be done with respect to SAT encodings. We believe
that many applications do not benefit from the efficiency in
SAT solving due to inefficiencies introduced while producing
SAT encodings. Moreover, there is a tight relation between
encodings and solvers: different encodings are more or less
effective depending on the solvers.

Encodings into SAT are constructed every time a new prob-
lem is converted into CNF. In this paper we focus on encod-
ing a particular problem, the social golfer problem, studying
the effect that encoding decisions have on performance. This
work contributes to better understanding the interplay of sat-
isfiability modeling and solving on combinatorial problems.

The rest of the paper is organized as follows. The next
section gives some insights on how to encode a problem into
SAT. Section 3 describes a particular combinatorial problem:
the social golfer problem. Section 4 explains how to en-
code the social golfer problem into SAT, including how to
break symmetries in this highly symmetric problem. After-
wards, experimental results are given for running both a lo-
cal search and a backtrack search solver (walksat and siege,
respectively) for the two encodings of the social golfer prob-
lem: one with no symmetry breaking and other with sym-
metry breaking. Finally, we conclude the paper and suggest
future work.

2 Encoding a Problem into SAT

Encoding combinatorial problems as SAT problems has been
mostly motivated by the recent advances in SAT solvers. The
new solvers are capable of solving very large, very hard real-
world problem instances, which more traditional SAT solvers
are totally incapable of.

Nonetheless, only a few problems are naturally encoded
as SAT problems. Combinational electronic circuits are the
most paradigmatic example. Indeed, more sophisticated log-
ics are frequently more adequate to represent most of the
problems. Consequently, encoding such problems as CNF
formulas may require a significant effort. Hopefully this
effort will be counterbalanced by the performance of SAT
solvers.



To encode a combinatorial problem into SAT one must de-
fine a set of variables and a set of constraints on the variables.
Usually we represent SAT problems as CNF formulas, and
therefore a formula is a conjunction of clauses, a clause is a
disjunction of literals and a literal is a variable or its negation.

The set of variables may be defined based on different cri-
teria: the most intuitive variables set, the set with minimum
cardinality, the set that will require the smallest number of
clauses, etc. Choosing the most adequate variables is more
an art than a science. Moreover, the definition of the set of
constraints may require the definition of additional auxiliary
variables. In some cases, these variables are really essential;
in other cases, we prefer to have more variables rather than
more clauses.

Recent advances in encodings include identifying and
breaking symmetries [Crawford et al., 1996; Brown et al.,
1988; Smith, 2001]. There has been a significant effort for
studying the effect of symmetry breaking in constraint satis-
faction, which has further motivated the study of symmetry
breaking in SAT encodings.

Symmetries cause the existence of redundant search paths,
which is a clear drawback for backtrack search. Breaking
symmetries reduces the search space: this is a clearly advan-
tage for problems having no solution, which implies travers-
ing the whole search space to prove unsatisfiability. For the
same reason, breaking symmetries is also an advantage when
all the solutions must be found. (Even though symmetri-
cal solutions have to be computed from the solutions found.)
Moreover, experimental evaluation has shown that (partially)
breaking symmetries can also be useful for finding one solu-
tion [Ramani and Markov, 2005]. Observe that with symme-
try breaking the freedom of the search is restricted.

On the other hand, there is often a trade-off between the
cost of eliminating symmetries and the savings derived from
having done so. Complete symmetry breaking make solvers
to return a unique solution from each set of symmetrically
equivalent ones, which is the one found first by the variable
and value ordering heuristics. But usually one is interested in
finding any solution as quickly as possible, rather than guar-
anteeing only distinct solutions are returned.

One may envision three main different ways of eliminating
symmetry:

1. Remodel the problem [Smith, 2001]. A different encod-
ing, e.g. obtained by defining a different set of variables,
may create a problem with less symmetries.

2. Add constraints to the model [Crawford et al., 1996;
Aloul et al., 2003]. Such constraints merge symme-
tries in equivalent classes. In practice, only one as-
signment satisfies these constraints, instead of n assign-
ments, where n is the number of elements in a given
equivalent class.

3. Change the search process to avoid symmetrically equiv-
alent states [Brown et al., 1988; Gent and Smith, 2000;
Fahle et al., 2001]. This can be done by adding con-
straints to ensure that any assignment symmetric to one
assignment already considered will not be explored in
the future, or by performing checks that symmetric
equivalents have not been visited. This is done for both

satisfying and unsatisfying assignments. However, this
approach has not found success in SAT. This is unsur-
prising, because of the reliance of SAT solvers on very
small time between branching decisions, limiting the
overheads that can be accepted and ruling out these sym-
metry breaking techniques.

Another approach that aims reducing symmetry was pro-
posed by Pedro Meseguer and Carme Torras [Meseguer and
Torras, 2001]. The idea is to use symmetry to guide the
search. The authors suggest the use of variable and value se-
lection heuristics to direct the search towards subspaces with
high density of non-symmetric states.

3 The Social Golfer Problem
The social golfer problem is derived from a question posted
to sci.op-research in May 1998:

The coordinator of a local golf club has come to
you with the following problem. In her club, there
are 32 social golfers, each of whom play golf once
a week, and always in groups of 4. She would like
you to come up with a schedule of play for these
golfers, to last as many weeks as possible, such
that no golfer plays in the same group as any other
golfer on more than one occasion.

In other words, this problem can be described more explic-
itly by enumerating four constraints which must be satisfied:

1. The golf club has 32 members.

2. Each member plays golf once a week.

3. Golfers always play in groups of 4.

4. No golfer plays in the same group as any other golfer
twice.

Since 1998, this problem has become a famous com-
binatorial problem. It is problem number 10 in CSPLib
(http://www.csplib.org/). A solution is said to be
optimal when maximum socialisation is achieved, i.e. when
one golfer plays with as many other golfers as possible.
Clearly, since a golfer plays with three new golfers each
week, the schedule cannot exceed 10 weeks. This follows
from the fact that each golfer plays with three other golfers
each week. Since there is a total of 31 other golfers, this
means that a golfer runs out of opponents after 31/3 weeks.

For some years, it was not known if a 10 week (and there-
fore optimal) solution for 32 golfers exists. In 2004, Aguado
found a solution using design-theoretic techniques [Aguado,
2004]. No constraint programming technique has yet solved
this instance, so it remains a valuable benchmark for the
constraint programming community. The best known solu-
tion from constraint programming is from Stefano Novello,
who posted a 9-week solution, along with the source of the
ECLiPSe program used to find it.

Even though the social golfer problem was described for
32 golfers playing in groups of 4, it can be easily general-
ized. An instance to the problem is characterized by a triple
w − p − g, where w is the number of weeks, p is the num-
ber of players per group and g is the number of groups. The



week group 1 group 2
1 1 2 3 4
2 1 3 2 4
3 1 4 2 3

Figure 1: A solution for the social golfer problem 3-2-2.

original question therefore is to find a solution to the w-4-8
problem, with w being the maximum, i.e. to find a solution
to 10-4-8 (or prove that none exists). For example, Figure 1
gives a solution for the social golfer problem 3-2-2, i.e. for
scheduling 4 golfers playing in 2 groups of 2 golfers each for
3 weeks.

The social golfer problem is related with other well-known
combinatorial problems. Indeed, this problem is a general-
isation of the problem of constructing a round-robin tour-
nament schedule, the main difference being that in the so-
cial golfer problem the number of players in a group may be
greater than two. Also, the social golfer problem of finding
a 7 week schedule for 5 groups of 3 players (7-3-5) is the
same as Kirkman’s Schoolgirl Problem, where the main goal
is to arrange fifteen schoolgirls in rows of three so that each
schoolgirl walks in the same row with every other schoolgirl
exactly once a week.

The social golfer problem is also well-known for being
a case study of symmetry for constraint programming (e.g.
see [Smith, 2001]). This problem is highly symmetric, ex-
hibiting the following symmetries:

• Golfers within a group are interchangeable. Order has
no significance for groups of golfers.

• Groups within a week are interchangeable. Again, order
has no significance when considering groups within a
week.

• Weeks are interchangeable. There are no order con-
straints with respect to weeks.

The exact group of symmetries that arises from this will de-
pend on the encoding chosen. For example, in the model con-
sidered by Harvey, Kelsey and Petrie [Harvey et al., 2003],
this gives the wreath product of S8 with S10. This means that
the 8 groupings in each week can be permuted in any way,
giving S8, and that the 10 weeks can also be permuted in any
way, giving S10.

Eliminating the above symmetries is not expensive and can
bring significant enhancements. For example, considering
again the solution given in Figure 1, one may assume that
symmetries have been eliminated: this explains why golfers
are ordered within groups, groups are ordered within weeks
with respect to the first player and weeks are ordered with
respect to the second player of the first group.

There is also one final symmetry that is not considered
above.

• Golfers are interchangeable. That is, the names of the 32
golfers are insignificant.

In the model just mentioned, the additional symmetry
would give a semi-direct product of the previous group with
S32. This combination of symmetries makes symmetry

breaking much more difficult, and to date no efficient method
to break all symmetries has been presented. From the very
beginning, the social golfer problem has been extensively
studied as a paradigmatic problem with a significant num-
ber of symmetries [Smith, 2001; Puget, 2002]. In this paper,
we concentrate only on the initial group of symmetries of the
problem, disregarding the more complicated combination for
simplicity. It would certainly be interesting to consider ap-
proaches to breaking the full group of the problem, following
for example [Aloul et al., 2003], but that is outside the scope
of this paper.

4 A SAT Encoding for the Social Golfer
Problem

To encode the social golfer problem as a SAT problem we
must define:

• A set of variables.

• A set of constraints (represented by clauses) on the vari-
ables.

The set of constraints must guarantee that each golfer plays
golf once a week, golfers always play in groups of a given
size and no golfer plays in the same group as any other golfer
twice.

4.1 The Model
We have defined SAT variables based on the golfers. Appar-
ently, for a social golfer problem w−p−g it should be enough
to have w × (p × g) × g variables. The value of each vari-
able would allow us to conclude whether, in a given week, a
certain golfer is scheduled to play in a particular group.

However, we have chosen a more expressive model. Even
though this model has more variables, these variables are
quite useful for defining the problem constraints. Instead of
w×(p×g)×g variables, this new model has w×(p×g)×(p×
g) variables. When compared with the other model, the dif-
ference is that we introduced an additional order relation for
golfers within groups. This means that the value of each vari-
able indicates whether golfer i is scheduled to play in group k
of week l as the jth player, with 1 ≤ i ≤ (p× g), 1 ≤ j ≤ p,
1 ≤ k ≤ g and 1 ≤ l ≤ w. (In what follows we will refer
to x = p × g as the number of golfers.) Although the or-
der of players is irrelevant within groups (as well as the order
of groups within weeks and the order of weeks), this model
requires most constraints to be at-least-one and at-most-one
clauses.

The next step consists in adding clauses to specify that:

• Each golfer plays exactly once per week, i.e.:

– Each golfer plays at least once per week.
– Each golfer plays at most once per week.

• Each group in each week has exactly p players, i.e.:

– At least one golfer must play as the jth golfer, with
1 ≤ j ≤ p.

– At most one golfer can play as the jth golfer, with
1 ≤ j ≤ p.



Let us now consider the social golfer problem w − p −

g, with the number of golfers being given by x = p × g.
Consider GOLFERijkl to be a variable equivalent to having
golfer i playing as the jth player of group k during week l,
with 1 ≤ i ≤ x, 1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w.

Each of at-least-one clauses referring to golfers has size
x = p × g and is obtained as simply as follows.

x
∧

i=1

w
∧

l=1

p
∨

j=1

g
∨

k=1

GOLFERijkl

The at-most-one clauses referring to golfers are encoded
with two sets of binary clauses. The first set of clauses guar-
antees that each golfer plays at most once in the same group.

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

p
∧

m=j+1

¬GOLFERijkl ∨ ¬GOLFERimkl

The second set of clauses guarantees that each golfer plays
at most once per week.
x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=j+1

¬GOLFERijkl ∨ ¬GOLFERinml

Let us now consider the clauses referring to groups of
golfers. Each at-least-one clause has size x and is obtained
as follows.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∨

i=1

GOLFERijkl

Finally, the at-most-clauses for groups of golfers are en-
coded by a set of binary clauses.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬GOLFERijkl ∨ ¬GOLFERimkl

With the set of variables and clauses described above we
have encoded all the constraints of the problem, except the
one that mentions that “no golfer plays in the same group
as any other golfer twice”. To guarantee this condition, we
introduce a set of auxiliary variables and a ladder matrix.

The set of auxiliary variables allows us to know exactly
which golfers are scheduled to play in each match. Hence, we
must have x × g × w additional variables. Clearly, the value
of these new variables depends on the value of the variables
GOLFER described above. Consider these new variables to
be a set of variables denoted as GOLFER’ikl, meaning that
golfer i is scheduled to play in group k during week l, with
1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w. It is easy to establish
an equivalence relation between each variable GOLFER’ikl

and the corresponding GOLFER variables. (Each equivalence
may be readily converted into a set of clauses.)

GOLFER’ikl ↔

p
∨

j=1

GOLFERijkl

These new variables will now be used by the variables in
the ladder matrix in such a way that no golfer plays in the
same group as any other golfer more than once.

1.1 1.2 2.1 2.2 3.1 3.2
3.4 T T F F F F
2.3 T T T T T T
2.4 T T T T F F
1.2 T F F F F F
1.3 T T T F F F
1.4 T T T T T F

Figure 2: The ladder matrix for the solution given in Figure 1.

The ladder matrix [Gent and Prosser, 2002; Ansótegui and
Manyá, 2004; Gent and Nightingale, 2004] is characterized
by a set of

(

x

2

)

× (g × w) Boolean ladder variables and a set
of ladder clauses. Intuitively, one would say that the value
of each variable denotes whether two golfers are scheduled to
play together in a given group of a given week. But we can do
better. We can guarantee that every two golfers play together
at most once.

Consider the ladder variables to be denoted as LADDERyz ,
with 1 ≤ y ≤

(

x

2

)

and 1 ≤ z ≤ g×w. A complete assignment
of the ladder variables is said to be valid if and only if every
row is a sequence of zero or more true assignments followed
by false assignments. In other words, after a ladder variable
being set to FALSE, no subsequent variables in the same row
can be assigned TRUE, i.e.:

∀y¬∃z • LADDERyz = FALSE ∧ LADDERyz+1 = TRUE

The behavior of the ladder matrix can be used to guar-
antee that no two golfers play more than once in the same
group. Actually, having an adjacent pair of variables with
values TRUE and FALSE identifies precisely in which group
of which week two golfers played together.

Whenever a ladder variable is satisfied, there is a set of
adjacent variables that must be satisfied. This can be achieved
by unit propagation adding the following set of clauses.

(x

2)−1
∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz

For example, consider the solution for the social golfer
problem 3-2-2 given in Figure 1. This solution corresponds
to the ladder matrix given in Figure 2. Each line in the ma-
trix corresponds to a pair of golfers. For example, the first
line named 3.4 indicates when golfers 3 and 4 play together.
Each column in the matrix corresponds to a group of golfers.
For example, the second column named 1.2 specifies the sec-
ond group of golfers playing in the first week. Each pair of
adjacent entries within a line with values T/F indicate when
two golfers play together. For example, the values of the two
entries in bold indicate that golfers 3 and 4 play together in
the second group of the first week. Observe that due to the
ladder matrix constraints no golfer can play with any other
golfer more than once.

Finally, the variables in the ladder matrix must be re-
lated with the auxiliary variables described above (denoted
as GOLFER’). Having GOLFER’ikl and GOLFER’mkl sat-
isfied means that both golfers i and m play in the same
group k in the same week l. This is equivalent to



having Ladder[(x−i

2 )+m−i](l×k) assigned value TRUE and

Ladder[(x−i

2 )+m−i](l×k+1) assigned value FALSE. Formally:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬GOLFER’ikl ∨ ¬GOLFER’mkl

∨Ladder[(x−i

2 )+m−i](l×k)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬GOLFER’ikl ∨ ¬GOLFER’mkl

∨¬Ladder[(x−i

2 )+m−i](l×k+1)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder[(x−i

2 )+m−i](l×k+1) ∨

¬Ladder[(x−i

2 )+m−i](l×k) ∨

¬GOLFER’ikl

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder[(x−i

2 )+m−i](l×k+1) ∨

¬Ladder[(x−i

2 )+m−i](l×k) ∨

¬GOLFER’mkl

4.2 Symmetry Breaking
After establishing the model described above, we consid-
ered predicates for breaking symmetries in our SAT encod-
ing for the social golfer problem. Clearly, this problem (and
therefore our model) is highly symmetric: golfers within a
group are interchangeable, groups within a week are also in-
terchangeable and finally weeks are interchangeable. We sug-
gest to tackle these symmetries by adding more clauses to the
encoding.

The symmetries between players within the same group are
eliminated by forcing players in the same group to be in lex-
icographic order, i.e. in increasing numerical order. In prac-
tice, this is done by adding a set of binary clauses as follows.

x
∧

i=1

p
∧

j=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERijkl ∨ ¬GOLFERm(j+1)kl

These clauses guarantee that if a golfer is scheduled to play
as the jth golfer, then the (j+1)th golfer has to be in a higher
numerical order.

Similarly, we impose the first players of the groups within
the same week to be in lexicographic order. Obviously, golfer
#1 must be scheduled as the first golfer in the first group
within each week. In addition, we use binary clauses to en-
code symmetry breaking within each week.

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERi1kl ∨ ¬GOLFERm1(k+1)l

These binary clauses impose first golfers of subsequent
groups to be in lexicographic order.

Finally, additional clauses are used to break symmetries
between weeks. This is simply achieved by imposing lexico-
graphic order between the second golfer of the first group of
each week. This is encoded as follows.

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERi2kl ∨ ¬GOLFERm2k(l+1)

These three sets of binary clauses suffice to break the sym-
metries that were initially mentioned. Observe that the so-
lution given in Figure 1 satisfies all the constraints we have
specified for symmetry breaking. As we mentioned earlier,
we leave for future work the interesting question of how best
to tackle the combination of these symmetries with the free
interchanging of players.

5 Experimental Results
In this section we evaluate empirically our encodings for the
social golfer problem1. We compare our encoding with and
without symmetries. We use two state-of-the-art SAT solvers:
walksat and siege.

Experimental results are given for a set of 29 benchmark
problems. All these problems are satisfiable. Otherwise, they
would not be solved by local search. Moreover, many of the
unsatisfiable problem instances of the social golfer problem
are trivially found to be unsatisfiable. On the other hand, it
is widely accepted that symmetry breaking helps proving un-
satisfiability (e.g. see [Ramani and Markov, 2005]), but not
much has been said about finding exactly one solution.

Table 1 characterizes each problem instance (named as
w − p − g) by giving the number of variables and clauses.
The larger instances have thousands of variables and around a
million of clauses. We have observed that most of the clauses
are either binary or ternary, which makes the average clause
size (AvgCS) to be between 2 and 3. We have also observed
that the additional clauses for breaking symmetries (SBCls),
which are all binary clauses, may augment the number of
clauses in the initial model for about 30% for the larger in-
stances (for smaller instances this value is smaller).

5.1 Local Search: Walksat
Walksat [Kautz et al., 2004] is a local search solver. The
algorithm is quite simple:

• Start with a random truth assignment.

• With probability p:

– Pick a variable occurring in some unsatisfied clause
and flip its truth assignment.

• With probability 1 − p:

– Make the best possible local move.

• Repeat the last two steps until the assignment satisfies
all clauses.

We have tried to run walksat on our benchmark problems
of the social golfer problem. Even though we tried many dif-
ferent configurations, walksat was far from being competitive
on solving these problems, specially those including clauses
for symmetry breaking. (We also tried other local search

1For all experimental results a P-IV@1.7 GHz Linux machine
with 1 GByte of physical memory was used.



Problem # Vars # Cls AvgCS % SBCls
3-2-2 108 446 2.43 9%
5-3-2 495 2547 2.46 10%
4-3-3 864 5598 2.41 17%
7-4-2 1456 8556 2.46 12%
9-5-2 3375 21665 2.45 13%
5-4-4 4000 35032 2.35 24%
11-6-2 6732 46026 2.45 14%
7-6-3 9450 79965 2.38 21%
13-7-2 12103 86751 2.44 15%
6-5-5 13500 147950 2.30 28%
7-7-3 14406 127302 2.38 21%
5-8-3 14880 135780 2.37 22%
3-6-6 15876 207054 2.26 31%
15-8-2 20160 149912 2.44 15%
6-7-4 21756 227402 2.33 26%
3-8-5 24480 303260 2.28 29%
5-7-5 28175 339185 2.29 29%
17-9-2 31671 242541 2.44 16%
4-7-6 32340 440013 2.26 31%
3-9-5 34020 432360 2.28 29%
10-9-3 41310 388341 2.37 22%
6-9-4 43740 484614 2.32 26%
8-10-3 44400 426435 2.37 22%
19-10-2 47500 372630 2.43 16%
3-9-6 48843 701811 2.25 32%
5-10-4 49000 554140 2.32 27%
4-8-7 63616 995876 2.23 34%
5-10-5 76250 991925 2.28 30%
4-9-7 88452 1419075 2.23 34%

Table 1: Social golfer problems: number of variables and
clauses.

solvers without success.) This is as suggested by Prestwich,
that symmetry breaking constraints reduce the number of so-
lutions and therefore make it harder for local search to find
solutions [Prestwich, 2001].

Nonetheless, we have run a problem for a significant num-
ber of seeds. Figure 3 compares the average number of flips
per second and the total CPU time for including or not includ-
ing symmetry breaking clauses on the encodings (SymBreak
and NoSymBreak, respectively). Results were obtaining run-
ning walksat with 1500 seeds for problem 7-4-2. From these
results, which we believe to be representative of our SAT
benchmark problems of the social golfer problem, we may
conclude that:

• Walksat performs more flips per second (in average)
without clauses for symmetry breaking. This may be
explained by the overhead produced by the additional
symmetry breaking clauses.

• Walksat requires more CPU time to solve instances with
symmetry breaking clauses.

• Adding clauses to break symmetries affects negatively
both the number of flips and the CPU time, although the
consequences are more negative for the CPU time. In-

deed, for the encoding with symmetry breaking clauses
we may observe an extremely fluctuation on the ex-
pected time to find a solution, which is probably associ-
ated with a heavy-tail distribution [Gomes et al., 2000].

5.2 Backtrack Search: Siege
Siege [Ryan, 2004] is a randomized backtrack search SAT
solver enhanced with clause recording. The data structures
are carefully implemented and the decision heuristic is very
efficient, specially for structured problems.

Siege has been shown to be quite competitive on solving
our benchmark problems. We have run siege on each prob-
lem for 1500 seeds. Figure 4 compares the number of nodes
(median and mean, using a logarithmic scale) for including
or not including symmetry breaking clauses. Figure 5 makes
the same comparison for the CPU time. Apparently, includ-
ing symmetry breaking clauses often does not compensate.
Furthermore, results for including symmetry breaking clauses
are more negative for the number of nodes rather than for the
CPU time. The same holds for the median values when com-
pared with the mean values.

With the aim of clarifying the differences between me-
dian and mean values, we have run one of the problems
where those differences could be observed (problem 6-7-4)
for 10000 seeds. Figure 6 gives the number of nodes and the
CPU time. From these plots we may conclude that adding
symmetry breaking clauses seems to avoid a heavy-tail be-
havior exhibited by the encoding with no symmetry break-
ing. Hence, we claim that adding symmetry breaking clauses
may avoid the heavy-tail behavior, in particular for the most
difficult instances.

6 Conclusions and Future Work
Recent advances in SAT solving motivate an increasing num-
ber of combinatorial problems to be encoded into SAT. We
argue that modeling decisions have an impact on the solver’s
performance. We have encoded the social golfer problem
into SAT. Two different encodings - with and without sym-
metry breaking - have been empirically evaluated with local
search and backtrack search solvers. A somewhat surprising
observation is that some of the encodings, depending on the
solvers, may exhibit a heavy-tail distribution. In such circum-
stances, choosing the right encoding can make the difference
between heavy-tail behavior or not. In a near future, we plan
to do a more comprehensive evaluation, which includes eval-
uating more instances, trying different encodings and also en-
coding new problems.
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Figure 4: Siege: comparison of the number of nodes (median and mean) for a set of problems.
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Figure 5: Siege: comparison of the CPU time (median and mean) for a set of problems.
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Figure 6: Siege: number of nodes and CPU time for problem 6-7-4.


