The CQuest SAT Solver

Inés Lynce and Joao Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal
{ines, jpms}@sat.inesc-id.pt

Abstract

This paper describes the CQuest SAT solver. This
solver is essentially a translation from Java to C++
of the JQuest2 SAT solver [4]. All of the Quest
generation solvers [3, 4] were mainly inspired in
Grasp [5] and Chaff [6].
backtrack search enhanced with clause recording.

These solvers perform

In addition, Chaff’s lazy data structures are im-
plemented in CQuest, in order to obtain fast unit
propagation, namely on (large) recorded clauses.
BerkMin [2] also inspired the CQuest SAT solver
with respect to the variable branching heuristic.
Experimental results have proved that CQuest is
a competitive solver, specially when considering
industrial benchmarks.

1 Introduction

In recent years, SAT has successfully found a
large number of significant applications. SAT
has also been the subject of intensive research.
Improvements in SAT solvers have been char-
acterized by a few significant paradigm shifts.
First, GRASP [5] very successfully proposed
using clause recording and non-chronological
backtracking in SAT solvers. More recently,
search restart strategies have been shown to
be extremely effective for solving real-world
problem instances [1]. The most recent par-
adigm shift was observed in Chaff [6], that
proposed several significant new ideas on how
to efficiently implement backtrack search SAT
algorithms. A few years ago, BerkMin [2] has
improved Chaff’s ideas on clauses’ manage-
ment and branching heuristics.

2 CQuest SAT Solver

Over the years a large number of algorithms
has been proposed for SAT. SAT algorithms
can be characterized as being either complete
or incomplete. Complete algorithms can es-
tablish unsatisfiability if given enough CPU
time; incomplete algorithms cannot.

Among the different algorithms, we be-
lieve backtrack search to be the most robust
approach for solving hard, structured, real-
world instances of SAT. Most backtrack search
SAT solvers are conceptually composed of three
main stages: the decision stage, the deduction
stage and the diagnosis stage. The decision
stage elects the variable and value to assign
at each branching step of the search process.
The deduction stage identifies necessary as-
signments as a result of each selected variable
assignment. The diagnosis stage implements
the backtracking step of the algorithm.

2.1 Decision Stage

CQuest implements a mix of Chaff’s [6] and
BerkMin’s [2] heuristic. Counters on variables
are updated whenever a new clause is created
(like in Chaff) or a new conflict if found (like
in BerkMin). The next variable to be assigned
is selected based on the values on the counters.

Chaff’s heuristic was introduced due to
the new lazy data structures. It selects the
literal that appears most frequently over all
clauses, i.e. the metrics are updated when
a new clause is recorded. In addition, Berk-
Min’s heuristic increases counters for variables
on clauses involved in conflicts.

SAT COMPETITION 2004 - SOLVER DESCRIPTION

2.2 Deduction Stage

CQuest deduction stage consists in Boolean
Constraint Propagation (BCP). Efficiency of
BCP depends mostly on the data structures
used to represent literals and clauses. CQuest
implements the lazy data structures first in-
troduced in Chaff [6]. However, small clauses
(unit, binary and ternary) are implemented
using dedicated data structures.

Lazy data structures are an improvement

on standard implementations, where literal coun- @

ters are associated with each clause, to keep
track of unsatisfied, satisfied and unit clauses.

Lazy implementations are characterized by each

variable keeping a reduced set of clauses’ ref-
erences. In Chaff, for each clause there are
solely two references to literals, which are said
to be watched. Since such literals are the last
to be assigned, unit and unsatisfied clauses
are detected by examining the references in
each clause. A significant feature of watched
literals is that no updating takes place in the
backtrack step.

2.3 Diagnosis Stage

The diagnosis stage of CQuest consists essen-
tially in the clause recording mechanism in the
presence of conflicts [5, 6], allowing the search
to backtrack non-chronologically.

In CQuest, whenever a conflict is found
a new clause is recorded to explain and pre-
vent identified conflicting conditions. CQuest
uses the first UIP scheme for clause recording,
which is considered to be the most competi-
tive [7]. To prevent memory exhaustion, large
recorded clauses are deleted opportunistically.
Recorded clauses are also used for computing
the backtracking decision level, which is de-
fined as the highest decision level of all vari-
able assignments of the literals in each newly
recorded clause.

In addition, CQuest performs search re-
starts whenever a limit on the number of back-
tracks is reached. This limit increases after
each restart to guarantee completeness [1].

3 Conclusions

We have described the CQuest SAT solver
that has been submitted to the SAT Competi-
tion 2004. The main characteristics of CQuest
SAT solver can be summarized as follows:

e CQuest is a complete non-randomized
SAT solver implemented in C++.

e CQuest performs backtrack search.

CQuest branching heuristic is inspired
on Chaff’s and BerkMin’s heuristics.

e CQuest data structures are inspired in
Chaff’s watched literals, although small
clauses have dedicated data structures.

e CQuest records clauses after finding a
conflict (and stops at the first UIP). Re-
corded clauses allow the search to back-
track non-chronologically. Large recorded
clauses are discarded opportunistically.

e Search restarts are applied when a limit
on the number of backtracks is reached.
After each restart, this limit is increased
to guarantee completeness.

References

[1] L. Baptista and J. P. Marques-Silva. Using
randomization and learning to solve hard real-
world instances of satisfiability. In C'P’00.

[2] E. Goldberg and Y. Novikov. BerkMin: a fast
and robust sat-solver. In DATE’02.

[3] I. Lynce and J. P. Marques-Silva. Effi-
cient data structures for backtrack search SAT
solvers. In SAT’02.

[4] I. Lynce and J. P. Marques-Silva. On imple-
menting more efficient SAT data structures. In
SAT03.

[5] J. P. Marques-Silva and K. A. Sakallah.
GRASP: A new search algorithm for satisfi-
ability. In ICCAD’96.

[6) M. Moskewicz, C. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Engineering an ef-
ficient SAT solver. In DAC’01.

[7] L. Zhang, C. F. Madigan, M. W. Moskewicz,
and S. Malik. Efficient conflict driven learning
in boolean satisfiability solver. In ICCAD’01.

