
Heuristic-Based Backtracking

for Propositional Satisfiability

A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

Technical University of Lisbon,
IST/INESC-ID, Lisbon, Portugal

{ateet,ines,jts,jpms}@sat.inesc.pt

Abstract. In recent years backtrack search algorithms for Propositional
Satisfiability (SAT) have been the subject of dramatic improvements.
These improvements allowed SAT solvers to successfully solve instances
with thousands of variables and hundreds of thousands of clauses, and
also motivated the development of many new challenging problem in-
stances, many of which still too hard for the current generation of SAT
solvers. As a result, further improvements to SAT technology are ex-
pected to have key consequences in solving hard real-world instances.
The objective of this paper is to propose heuristic approaches to the
backtrack step of backtrack search SAT solvers, with the goal of increas-
ing the ability of a SAT solver to search different parts of the search
space. The proposed heuristics are inspired by the heuristics proposed in
recent years for the branching step of SAT solvers, namely VSIDS and
some of its improvements. Moreover, the completeness of the new algo-
rithm is guaranteed. The preliminary experimental results are promising,
and motivate the integration of heuristic backtracking in state-of-the-art
SAT solvers.

1 Introduction

Propositional Satisfiability is a well-known NP-complete problem, with theoret-
ical and practical significance, and with extensive applications in many fields of
Computer Science and Engineering, including Artificial Intelligence and Elec-
tronic Design Automation.

Current state-of-the-art SAT solvers incorporate sophisticated pruning tech-
niques as well as new strategies on how to organize the search. Effective search
pruning techniques are based, among others, on nogood learning and dependency-
directed backtracking [16] and backjumping [5], whereas recent effective strate-
gies introduce variations on the organization of backtrack search. Examples of
such strategies are weak-commitment search [17], search restarts [9] and random
backtracking [10].

Advanced techniques applied to backtrack search SAT algorithms have achie-
ved remarkable improvements [2, 8, 11, 12], having been shown to be crucial for
solving hard instances of SAT obtained from real-world applications. Moreover,
and from a practical perspective, the most effective algorithms are complete,



2 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

and so able to prove unsatisfiability. Indeed, this is often the objective in a large
number of significant real-world applications.

Nevertheless, it is also widely accepted that local search can often have clear
advantages with respect to backtrack search, since it is allowed to start the
search over again whenever it gets stuck in a locally optimal partial solution.
This advantage of local search has motivated the study of approaches for relax-
ing backtracking conditions (while still assuring completeness). The key idea is
to unrestrictedly choose the point to backtrack to, in order to avoid thrashing
during backtrack search. Moreover, one can think of combining different forms
of relaxing the identification of the backtrack point.

In this paper, we propose to use heuristic knowledge to select the back-
track point. Besides describing the generic heuristic backtracking search strat-
egy, we establish backtracking heuristics inspired in the most promising branch-
ing heuristics proposed in recent years, namely the VSIDS heuristic used by
Chaff [12] and BerkMin’s branching heuristic [8]. Moreover, completeness con-
ditions for the resulting SAT algorithm are established.

The remainder of this paper is organized as follows. The next section presents
definitions used throughout the paper. Afterwards, we briefly survey backtrack
search SAT algorithms. In Section 4 we introduce heuristic backtracking. Then,
we describe unrestricted backtracking algorithms for SAT, and explain how
heuristic backtracking can be regarded as a special case of unrestricted back-
tracking. In addition, we address completeness issues. Next, Section 6 gives pre-
liminary experimental results. Finally, we describe related work and conclude
with directions for future research work.

2 Definitions

This section introduces the notational framework used throughout the paper.
Propositional variables are denoted x1, . . . , xn, and can be assigned truth values
0 (or F ) or 1 (or T ). The truth value assigned to a variable x is denoted by ν(x).
(When clear from context we use x = νx, where νx ∈ {0, 1}). A literal l is either
a variable xi or its negation ¬xi. A clause ω is a disjunction of literals and a CNF
formula ϕ is a conjunction of clauses. A clause is said to be satisfied if at least
one of its literals assumes value 1, unsatisfied if all of its literals assume value
0, unit if all but one literal assume value 0, and unresolved otherwise. Literals
with no assigned truth value are said to be free literals. A formula is said to be
satisfied if all its clauses are satisfied, and is unsatisfied if at least one clause is
unsatisfied. A truth assignment for a formula is a set of pairs of variables and
their corresponding truth values. The SAT problem consists of deciding whether
there exists a truth assignment to the variables such that the formula becomes
satisfied.

SAT algorithms can be characterized as being either complete or incomplete.
Complete algorithms can establish unsatisfiability if given enough CPU time;
incomplete algorithms cannot. Examples of complete and incomplete algorithms
are backtrack search and local search algorithms, respectively. In a search con-



Heuristic-Based Backtracking for Propositional Satisfiability 3

text, complete algorithms are often referred to as systematic, whereas incomplete
algorithms are referred to as non-systematic.

3 Backtrack Search SAT Algorithms

Over the years a large number of algorithms have been proposed for SAT,
from the original Davis-Putnam procedure [4], to recent backtrack search al-
gorithms [2, 8, 11, 12] and to local search algorithms [15], among many others.

The vast majority of backtrack search SAT algorithms build upon the original
backtrack search algorithm of Davis, Logemann and Loveland [3]. The backtrack
search algorithm is implemented by a search process that implicitly enumerates
the space of 2n possible binary assignments to the n problem variables. Each dif-
ferent truth assignment defines a search path within the search space. A decision
level is associated with each variable selection and assignment. The first variable
selection corresponds to decision level 1, and the decision level is incremented by
1 for each new decision assignment 1. In addition, and for each decision level, the
unit clause rule [4] is applied. (The iterated application of the unit clause rule is
often referred to as Boolean Constraint Propagation (BCP)). If a clause is unit,
then the sole free literal must be assigned value 1 for the formula to be satisfied.
In this case, the value of the literal and of the associated variable are said to be
implied. Consequently, assigned variables can be distinguished between decision
variables and implied variables.

In chronological backtracking, the search algorithm keeps track of which de-
cision assignments have been toggled. Given an unsatisfied clause (i.e. a conflict
or a dead end) at decision level d, the algorithm checks whether at the current
decision level the corresponding decision variable x has already been toggled.
If not, the algorithm erases the variable assignments which are implied by the
assignment on x, including the assignment on x, assigns the opposite value to
x, and marks decision variable x as toggled. In contrast, if the value of x has
already been toggled, the search backtracks to decision level d − 1.

Recent state-of-the-art SAT solvers utilize different forms of non-chronological
backtracking [2, 11, 12], in which each identified conflict is analyzed, its causes
identified, and a new clause (nogood) created to explain and prevent the identi-
fied conflicting conditions. Created clauses are then used to compute the back-
track point as the most recent decision assignment from all the decision assign-
ments represented in the recorded clause. Moreover, some of the (larger) recorded
clauses are eventually deleted. Clauses can be deleted opportunistically whenever
they are no longer relevant for the current search path [11].

Figure 1 illustrates the differences between chronological backtracking (CB)
and non-chronological backtracking (NCB). On the top of the figure appears a
generic search tree (either possible in the context of CB or NCB). The search
is performed accordingly to a depth-first search, and therefore the non-dashed
branches define the search space explored so far. On the one hand, and when

1 Observe that all the assignments made before the first decision assignment corre-
spond to decision level 0.



4 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

CB(b)

NCB(a)

NCB(b)

CB(a)

CB/NCB

Fig. 1. Chronological Backtracking (CB) vs Non-Chronological Backtracking (NCB)

a conflict if found, the chronological backtracking algorithm makes the search
backtrack to the most recent yet untoggled decision variable (see CB(a)). On
the other hand, when non-chronological backtracking is applied, the backtrack
point is computed as the most recent decision assignment from all the decision
assignments represented in the recorded clause. In this case the search backtracks
to a higher level in the search tree (NCB(a)), skipping portions of the search tree
that are found to have no solution (see NCB(b)). From the final figures (CB(b)
and NCB(b)) it is plain to conclude that the number of nodes explored by NCB
is always equal or smaller than the number of nodes explored by CB 2. (Observe
that nogoods can also reduce the search space, since similar conflict paths of the
search space are avoided to be searched.)

4 Heuristic Backtracking

Heuristic backtracking consists of selecting the backtrack point in the search
tree as a function of variables in the most recently recorded clause. Different
heuristics can be envisioned for applying heuristic backtracking. In this work we
implemented three different heuristics:

1. One heuristic that decides the backtrack point given the information of the
most recently recorded conflict clause.

2 Assuming that a fixed order branching heuristic is used.



Heuristic-Based Backtracking for Propositional Satisfiability 5

2. Another heuristic that is inspired in the VSIDS branching heuristic, used by
Chaff [12].

3. Finally, one heuristic that is inspired by BerkMin’s branching heuristic [8].

In all cases the backtrack point is computed as the variable with the largest
heuristic metric.

Next, we describe how the three different approaches are implemented in the
heuristic backtracking algorithm.

4.1 Plain Heuristic Backtracking

Under the plain heuristic backtracking approach the backtrack point (i.e. deci-
sion level) is computed by selecting the decision level with the largest number
of occurrences in the just recorded clause. After a conflict (i.e. an unsatisfied
clause) is identified, a conflict clause is created. The conflict clause is then used
for heuristically deciding which decision assignment is to be toggled. This con-
trasts with the usual non-chronological backtracking approach, in which the most
recent decision assignment variable is selected as the backtrack point.

4.2 VSIDS-like Heuristic Backtracking

The second approach to heuristic backtracking is based on the Variable State
Independent Decaying Sum (VSIDS) branching heuristic [12]. VSIDS was the
first of new generation of decision heuristics. This new heuristic has been used
in Chaff, a highly optimized SAT solver. More than to develop a well-behaviored
heuristic, the motivation in Chaff has been to design a fast heuristic. In fact,
one of the key properties of this strategy is the very low overhead, due to being
independent of the variable state. As a result, the variable metrics are only
updated when there is a conflict.

Similarly to Chaff, in VSIDS-like heuristic backtracking a metric is associ-
ated with each literal, which is incremented when a new clause containing the
literal; after every k decisions, the metric values are divided by a small constant.
With the VSIDS-like heuristic backtracking, the assigned literal with the highest
metric is selected as the backtrack point.

4.3 BerkMin-like Heuristic Backtracking

The third approach for implementing heuristic backtracking is inspired in Berk-
Min’s branching heuristic [8]. This heuristic was inspired in the VSIDS heuristic
used in Chaff, but the process of updating the metrics of the literals differs. On
the one hand, Chaff’s authors compute the activity of a variable v by counting
the number of occurrences of v in conflict clauses. On the other hand, BerkMin’s
authors take into account a wider set of clauses involved in conflict making
for computing each variable activity. This procedure avoids overlooking some
variables that do not appear in conflict clauses while actively contributing to
conflicts.



6 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

In our implementation of BerkMin-like heuristic backtracking, the metrics of
the literals of all clauses that are directly involved in producing the conflict, and
so in creating the newly recorded clause, are updated when a clause is recorded.
As in the cases of the VSIDS-like backtracking heuristic, the assigned literal with
the highest metric is selected as the backtrack point.

5 Unrestricted Backtracking

Heuristic backtracking can be viewed as a special case of unrestricted backtrack-
ing [10], the main difference being that while in unrestricted backtracking any
form of backtrack step can be applied, in heuristic backtracking the backtrack
point is computed from heuristic information, obtained from the current and
past conflicts.

Unrestricted backtracking algorithms allow the search to unrestrictedly back-
track to any point in the current search path whenever a conflict is reached.
Besides the freedom for selecting the backtrack point in the decision tree, un-
restricted backtracking entails a policy for applying different backtrack steps in
sequence. Each backtrack step can be selected among chronological backtracking,
non-chronological backtracking or incomplete forms of backtracking (e.g. search
restarts, weak-commitment search, random backtracking, heuristic backtracking,
among many others). More formally, unrestricted backtracking (UB) consists of
defining a sequence of backtrack steps {BSt1,BSt2,BSt3, . . .} such that each
backtrack step BSti can either be a chronological (CB), a non-chronological
(NCB) or an incomplete form of backtracking (IFB).

Interestingly, the definition of unrestricted backtracking allows capturing the
backtracking search strategies used by current state-of-the-art SAT solvers [2, 8,
11, 12]. Indeed, if the unrestricted backtracking strategy specifies always apply-
ing the chronological backtracking step or always applying the non-chronological
backtracking step, then we respectively capture the chronological and non-chrono-
logical backtracking search strategies.

Finally, observe that unrestricted backtracking gives a unified representa-
tion for different backtracking strategies. Consequently, unrestricted backtrack-
ing further allows establishing general completeness conditions for classes of
backtracking strategies and not only for each individual strategy, as it has often
been done [14, 17].

In what follows, we will further relate unrestricted backtracking with heuristic
backtracking. In addition, we will describe completeness conditions established
for unrestricted backtracking. We should note that the completeness conditions
established to all organizations of unrestricted backtracking may obviously be
applied to any special case of unrestricted backtracking (e.g. heuristic backtrack-
ing).

5.1 Unrestricted Backtracking and Heuristic Backtracking

As mentioned above, heuristic backtracking can be viewed as a special case of
unrestricted backtracking. In unrestricted backtracking any form of backtrack



Heuristic-Based Backtracking for Propositional Satisfiability 7

NCB

S

HB

S

?
S

CB

Fig. 2. Comparing Chronological Backtracking (CB), Non-Chronological Backtracking
(NCB) and Heuristic Backtracking (HB)

step can be applied (CB, NCB or IFB), while in heuristic backtracking the
backtrack point is heuristically selected.

Figure 2 exemplifies how heuristic backtracking can lead to incompleteness.
Figure 2 illustrates the subsequent search of Figure 1, for both chronological (CB)
and non-chronological backtracking (NCB). In addition, an example is given for
heuristic backtracking (HB). The search path that leads to the solution is marked
with letter S. For CB and NCB the solution is easily found. However, since with
heuristic backtracking the search backtracks heuristically, the search space that
leads to the solution is simply skipped. Hence, what has to be done in order to
assure the correctness and completeness of the heuristic backtracking algorithm?
First, and similarly to local search, we have to assume that the variable toggling
in heuristic backtracking is reversible. For the given example, this means that
the solution can be found in a subsequent search, although the solution would
have been skipped if variable toggling was not reversible.

However, and exactly as with unrestricted backtracking, a number of tech-
niques can be used to ensure completeness. These techniques are analyzed in [10]
and will be reviewed in what follows of this section. Completeness techniques for
unrestricted backtracking can be organized in two classes:

– Marking recorded clauses as non-deletable. This solution may yield an ex-
ponential growth in the number of recorded clauses 3.

– Increasing a given constraint (e.g. the number of non-deletable recorded
causes) in between applications of different backtracking schemes. This solu-
tion can be used to guarantee a polynomial growth of the number of recorded
clauses.

5.2 Completeness Issues

In this section we address the problem of guaranteeing the completeness of SAT
algorithms that implement some form of unrestricted backtracking (e.g. heuristic
backtracking). It is clear that unrestricted backtracking can yield incomplete
algorithms. Hence, for each newly devised SAT algorithm, that utilizes some
form of UB, it is important to be able to apply conditions that guarantee the
completeness of the resulting algorithm.

3 In practice this situation hardly ever arises.



8 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

CONFLICT

xj

(¬xi ∨ xj ∨ xk)
path clause:

conflict path

xi = 1

xi

conflict sub-path

xk

xi = 0

conflict clause:
(¬xi ∨ xk)

Fig. 3. Search tree definitions

The results presented in this section generalize, for the unrestricted back-
tracking algorithm, completeness results that have been proposed in the past
for specific backtracking relaxations. We start by establishing, in a more general
context, a few already known results. Afterwards, we establish additional results
regarding unrestricted backtracking.

In what follows we assume the organization of a backtrack search SAT algo-
rithm as described earlier in this paper. The main loop of the algorithm consists
of selecting a variable assignment (i.e. a decision assignment), making that as-
signment, and propagating that assignment using BCP. In the presence of an un-
satisfied clause (i.e. a conflict) the algorithm backtracks to a decision assignment
that can be toggled 4. Each time a conflict is identified, all the current decision
assignments define a conflict path in the search tree. (Observe that we restrict
the definition of conflict path solely with respect to the decision assignments.)
After a conflict is identified, we may apply a conflict analysis procedure [2, 11,
12] to identify a subset of the decision assignments that represent a sufficient
condition for producing the same conflict. The subset of decision assignments
that is declared to be associated with a given conflict is referred to as a conflict
sub-path. A straightforward conflict analysis procedure consists of constructing
a clause with all the decision assignments in the conflict path. In this case the
created clause is referred to as a path-clause. Figure 3 illustrates these defini-
tions. We can now establish a few general results that will be used throughout
this section.

Proposition 1. If an unrestricted backtracking search algorithm does not repeat
conflict paths, then it is complete.

4 Without loss of generality, we assume that NCB also uses (binding) variable toggling
as the result of backtracking. In some recent algorithms this is not the case [12].



Heuristic-Based Backtracking for Propositional Satisfiability 9

Proof. Assume a problem instance with n variables. Observe that there are 2n

possible conflict paths. If the algorithm does not repeat conflict paths, then it
must necessarily terminate.

Proposition 2. If an unrestricted backtracking search algorithm does not repeat
conflict sub-paths, then it does not repeat conflict paths.

Proof. Observe that if a conflict sub-path is not repeated, then no conflict path
can contain the same sub-path, and so no conflict path can be repeated.

Proposition 3. If an unrestricted backtracking search algorithm does not repeat
conflict sub-paths, then it is complete.

Proof. Given the two previous results, if no conflict sub-paths are repeated, then
no conflict paths are repeated, and so completeness is obtained.

Proposition 4. If the number of times an unrestricted backtracking search algo-
rithm repeats conflict paths or conflict sub-paths is upper-bounded by a constant,
then the backtrack search algorithm is complete.

Proof. We prove the result for conflict paths; for conflict sub-paths, it is similar.
Let M be a constant denoting an upper bound on the number of times a given
conflict path can be repeated. Since the total number of distinct conflict paths
is 2n, and since each can be repeated at most M times, then the total number
of conflict paths the backtrack search algorithm can enumerate is M × 2n, and
so the algorithm is complete.

Proposition 5. For an unrestricted backtracking search algorithm the following
holds:

1. If the algorithm creates a path clause for each identified conflict, then the
search algorithm repeats no conflict paths.

2. If the algorithm creates a conflict clause for each identified conflict, then the
search algorithm repeats no conflict sub-paths.

3. If the algorithm creates a conflict clause (or a path clause) after every
M identified conflicts, then the number of times an unrestricted backtrack-
ing search algorithm repeats conflict sub-paths (or conflict paths) is upper-
bounded.

In all of the above cases, the search algorithm is complete.

Proof. Recall that the search algorithm always applies BCP after making a de-
cision assignment. Hence, if a clause describing a conflict has been recorded, and
not deleted, BCP guarantees that a conflict is declared, without requiring the
same set of decision assignments that yields the original conflict. As a result,
conflict paths are not repeated. The same holds true respectively for conflict
clauses and conflict sub-paths. Since either conflict paths or conflict sub-paths
are not repeated, the search algorithm is complete (from Propositions 1 and 3).
With respect to creating (and recording) a conflict clause (or a path clause) after
every M identified conflicts, clearly the number of times a given conflict sub-
path (or conflict path) is repeated is upper-bounded. Hence, using the results of
Proposition 4 completeness is guaranteed.



10 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

Observe that Proposition 5 holds independently of which backtrack step is
taken each time a conflict is identified. Hence, as long as we record a conflict for
each identified conflict, any form of unrestricted backtracking yields a complete
algorithm. Less general formulations of this result have been proposed in the
recent past [6, 17, 14].

The results established so far guarantee completeness at the cost of recording
(and keeping) a clause for each identified conflict. In this section we propose
and analyze conditions for relaxing this requirement. As a result, we allow for
some clauses to be deleted during the search process, and only require some
specific recorded clauses to be kept 5. (We should note that clause deletion does
not apply to chronological backtracking strategies and that, as shown in [11],
existing clause deletion policies for non-chronological backtracking strategies do
not compromise the completeness of the algorithm.) Afterwards, we propose
other conditions that do not require specific recorded clauses to be kept.

Proposition 6. An unrestricted backtracking algorithm is complete if it records
(and keeps) a conflict-clause for each identified conflict for which an IFB step is
taken.

Proof. Observe that there are at most 2n IFB steps that can be taken, because
a conflict clause is recorded for each identified conflict for which an IFB step is
taken, and so conflict sub-paths due to IFB steps cannot be repeated. Moreover,
the additional backtrack steps that can be applied (CB and NCB) also ensure
completeness. Hence, the resulting algorithm is complete.

Moreover, we can also generalize Proposition 4.

Proposition 7. Given an integer constant M , an unrestricted backtracking al-
gorithm is complete if it records (and keeps) a conflict-clause after every M

identified conflicts for which an IFB step is taken.

Proof. The result immediately follows from Propositions 5 and 6.

As one final remark, observe that for the previous conditions, the number of
recorded clauses grows linearly with the number of conflicts where an IFB step
is taken, and so in the worst-case exponentially in the number of variables.

Other approaches to guarantee completeness involve increasing the value of
some constraint associated with the search algorithm. The following results il-
lustrate these approaches.

Proposition 8. Suppose an unrestricted backtracking strategy that applies a se-
quence of backtrack steps. If for this sequence the number of conflicts in between
IFB steps strictly increases after each IFB step, then the resulting algorithm is
complete.

5 We say that a recorded clause is kept provided it is prevented from being deleted
during the subsequent search.



Heuristic-Based Backtracking for Propositional Satisfiability 11

Proof. If only CB or NCB steps are taken, then the resulting algorithm is com-
plete. When the number of conflicts in between IFB steps reaches 2n, the algo-
rithm is guaranteed to terminate.

We should also note that this result can be viewed as a generalization of the
completeness-ensuring condition used in search restarts, that consists of increas-
ing the backtrack cutoff value after each search restart [1] 6. Finally, observe that
in this situation the growth in the number of clauses can be made polynomial,
provided clause deletion is applied on clauses recorded from NCB and IFB steps.

The next result establishes conditions for guaranteeing completeness when-
ever large recorded clauses (due to an IFB step) are opportunistically deleted.
The idea is to increase the size of recorded clauses that are kept after each IFB
step. Another approach is to increase the life-span of large-recorded clauses, by
increasing the relevance-based learning threshold [2].

Proposition 9. Suppose an unrestricted backtracking strategy that applies a
specific sequence of backtrack steps. If for this sequence, either the size of the
largest recorded clause kept or the size of the relevance-based learning threshold
is strictly increased after each IFB step is taken, then the resulting algorithm is
complete.

Proof. When either the size of the largest recorded clause reaches value n, or
the relevance-based learning threshold reaches value n, all recorded clauses will
be kept, and so completeness is guaranteed from Proposition 5.

Observe that for this last result the number of clauses can grow exponentially
with the number of variables. Moreover, we should note that the observation
regarding increasing the relevance-based learning threshold was first suggested
in [12].

One final result addresses the number of times conflict paths and conflict
sub-paths can be repeated.

Proposition 10. Under the conditions of Proposition 8 and Proposition 9, the
number of times a conflict path or a conflict sub-path is repeated is upper-
bounded.

Proof. Clearly, the resulting algorithms are complete, and so known to terminate
after a maximum number of backtrack steps (that is constant for each instance).
Hence, the number of times a conflict path (or conflict sub-path) can be repeated
is necessarily upper-bounded.

6 Experimental Results

This section presents the experimental results of applying heuristic backtracking
to different classes of problem instances. In addition, we compare heuristic back-
tracking with other forms of backtracking relaxations, namely search restarts [9]
6 Given this condition, the resulting algorithm resembles iterative-deepening.



12 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

and random backtracking [10]. Our goal here has been to test the feasibility of the
heuristic backtracking algorithm using three different heuristics: a plain heuris-
tic, the VSIDS heuristic and the BerkMin’s heuristic. Experimental evaluation
of the different algorithms has been done using the JQUEST SAT framework,
a Java framework for prototyping SAT algorithms. All the experiments were
run on the same P4/1.7GHz/1GByte of RAM/Linux machine. The CPU time
limit for each instance was set to 2000 seconds, except for instances from Bei-
jing family, for which the maximum run time allowed was 5000 seconds. In all
cases where the algorithm was unable to solve an instance it was due to memory
exhaustion.

The total run times for solving different class of benchmarks are shown in
Table 1 and Table 2. In both tables, #I denotes the number of problem instances,
Time denotes the CPU time and X denotes the number of aborted instances. In
addition, each column indicates a different form of backtracking relaxation:

– RST indicates that the search restart strategy [9] is applied with a cutoff
value of 100 backtracks and is kept fixed. All recorded clauses are kept to
ensure completeness.

– RB indicates that random backtracking [10] is applied at each backtrack
step.

– HB(P) indicates that plain heuristic backtracking is applied at each back-
track step.

– HB(C) indicates that the Chaff’s VSIDS-like heuristic backtracking is ap-
plied at each step.

– HB(B) indicates that the BerkMin-like heuristic backtracking is applied at
each step.

Table 1. Performance of different algorithms on every backtrack step.

Benchmarks #I RST RB HB(P) HB(C) HB(B)
Time X Time X Time X Time X Time X

bmc-galileo 2 1885.93 0 3052.19 1 1575.97 0 1570.48 0 1553.83 0

bmc-ibm 11 3486.17 1 5781.31 1 4326.73 1 4340.53 1 4318.04 1

Hole 5 317.35 0 2318.71 1 245.69 0 244.27 0 240.27 0

Hanoi 2 2208.09 1 3560.72 1 2113.51 1 2113.02 1 2111.94 1

BMC-barrel 8 4764.22 2 7498.39 3 4505.44 2 4504.73 2 4505 2

Beijing 16 1190.09 2 5751.29 3 4539.51 2 4513.11 2 4520.41 2

Blocksworld 7 937.45 0 1312.18 0 324.07 0 325.73 0 320.41 0

Logistics 4 11.9 0 31.09 0 12.73 0 12.27 0 12.13 0

par16 10 972.39 0 1968.87 0 256.89 0 251.34 0 250.4 0

ii16 10 39.19 0 102.1 0 120.22 0 119.64 0 118.62 0

ucsc-ssa 102 29.89 0 37.59 0 29.41 0 29.56 0 29.48 0

ucsc-bf 223 78.1 0 106.57 0 85.05 0 78.93 0 79.78 0



Heuristic-Based Backtracking for Propositional Satisfiability 13

Table 2. Performance of different algorithms on every 100 backtracks.

Benchmarks #I RST RB HB(P) HB(C) HB(B)
Time X Time X Time X Time X Time X

bmc-galileo 2 1833.57 0 2242.93 0 527.14 0 359.22 0 414.57 0

bmc-ibm 11 4553.88 1 4585.39 1 4796.98 1 3989.88 1 4166.41 1

Hole 5 356.44 0 284.9 0 355.71 0 356.6 0 338.57 0

Hanoi 2 2122.98 1 2058.92 1 2183.49 1 2239.5 1 2235.25 1

BMC-barrel 8 4824.22 2 4742.33 2 7521.81 3 6840.03 3 7402.13 3

Beijing 16 5768.92 2 3822.52 2 3555.38 2 3369.57 2 4642.97 2

Blocksworld 7 933.18 0 526.19 0 613.31 0 1092.62 0 1448.54 0

Logistics 4 14.76 0 14.27 0 10.98 0 10.47 0 11.82 0

par16 10 895.83 0 829.68 0 292.77 0 334.4 0 382.55 0

ii16 10 38.3 0 55.49 0 135.86 0 132.85 0 138.61 0

ucsc-ssa 102 33.9 0 46.79 0 36.17 0 35.25 0 49.02 0

ucsc-bf 223 90.7 0 112.01 0 87.23 0 64.67 0 111.95 0

In Table 1, the different forms of backtracking are performed at every back-
track step. In addition, completeness is ensured by marking the recorded clauses
as non-deletable. In Table 2, the different forms of backtracking are performed
after every 100 backtracks, and an increment of 10 backtracks is applied. In this
case, completeness is ensured by marking clauses recorded whenever a relaxed
backtrack step is performed as non-deletable.

As can be concluded from the experimental results, heuristic backtracking
can yield significant savings in CPU time, and also allow for a smaller number
of instances to be aborted. This is true for several of the classes of problem
instances analyzed.

7 Related Work

Dependency-directed backtracking and nogood learning were originally proposed
by Stallman and Sussman in [16] in the area of Truth Maintenance Systems
(TMS). In the area of Constraint Satisfaction Problems (CSP), the topic was
independently studied by J. Gaschnig [5] and others (see for example [13]) as
different forms of backjumping.

The introduction of relaxations in the backtrack step is also related with
dynamic backtracking [6]. Dynamic backtracking establishes a method by which
backtrack points can be moved deeper in the search tree. This allows avoiding
the unneeded erasing of the amount of search that has been done thus far. The
objective is to find a way to directly ”erase” the value assigned to a variable
as opposed to backtracking to it, moving the backjump variable to the end of
the partial solution in order to replace its value without modifying the values of
the variables that currently follow it. More recently, Ginsberg and McAllester
combined local search and dynamic backtracking in an algorithm which enables



14 A. Bhalla, I. Lynce, J.T. de Sousa and J. Marques-Silva

arbitrary search movement [7], starting with any complete assignment and evolv-
ing by flipping values of variables obtained from the conflicts.

In weak-commitment search [17], the algorithm constructs a consistent partial
solution, but commits to the partial solution weakly. In weak-commitment search,
whenever a conflict is reached, the whole partial solution is abandoned, in explicit
contrast to standard backtracking algorithms where the most recently added
variable is removed from the partial solution.

Moreover, search restarts have been proposed and shown effective for hard
instances of SAT [9]. The search is repeatedly restarted whenever a cutoff value
is reached. The algorithm proposed is not complete, since the restart cutoff point
is kept constant. In [1], search restarts were jointly used with learning for solving
hard real-world instances of SAT. This latter algorithm is complete, since the
backtrack cutoff value increases after each restart. One additional example of
backtracking relaxation is described in [14], which is based on attempting to
construct a complete solution, that restarts each time a conflict is identified.
More recently, highly-optimized complete SAT solvers [8, 12] have successfully
combined non-chronological backtracking and search restarts, again obtaining
remarkable improvements in solving real-world instances of SAT.

8 Conclusions and Future Work

This paper proposes the utilization of heuristic backtracking in backtrack search
SAT solvers. The most well-known branching heuristics used in state-of-the-art
SAT solvers were adapted to the backtrack step of SAT solvers. The experimental
results illustrate the practicality of heuristic backtracking.

The main contributions of this paper can be summarized as follows:

1. A new heuristic backtrack search SAT algorithm is proposed, that heuristi-
cally selects the point to backtrack to.

2. The proposed SAT algorithm is shown to be a special case of unrestricted
backtracking, and different approaches for ensuring completeness are de-
scribed.

3. Experimental results indicate that significant savings in search effort can
be obtained for different organizations of the proposed heuristic backtrack
search algorithm.

Besides the preliminary experimental results, a more comprehensive experi-
mental evaluation is required. In addition, future work entails deriving conditions
for selecting among search restarts and heuristic backtracking.

References

1. L. Baptista and J. P. Marques-Silva. Using randomization and learning to solve
hard real-world instances of satisfiability. In R. Dechter, editor, Proceedings of the

International Conference on Principles and Practice of Constraint Programming,
volume 1894 of Lecture Notes in Computer Science, pages 489–494. Springer Verlag,
September 2000.



Heuristic-Based Backtracking for Propositional Satisfiability 15

2. R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence,
pages 203–208, July 1997.

3. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery, 5:394–397,
July 1962.

4. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the Association for Computing Machinery, 7:201–215, July 1960.
5. J. Gaschnig. Performance Measurement and Analysis of Certain Search Algo-

rithms. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, May 1979.
6. M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,

1:25–46, 1993.
7. M. Ginsberg and D. McAllester. GSAT and dynamic backtracking. In Proceedings

of the International Conference on Principles of Knowledge and Reasoning, pages
226–237, 1994.

8. E. Goldberg and Y. Novikov. BerkMin: a fast and robust sat-solver. In Proceedings

of the Design and Test in Europe Conference, pages 142–149, March 2002.
9. C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. In Proceedings of the National Conference on Artificial Intelligence,
pages 431–437, July 1998.

10. I. Lynce and J. P. Marques-Silva. Complete unrestricted backtracking algorithms
for satisfiability. In Proceedings of the International Symposium on Theory and

Applications of Satisfiability Testing, pages 214–221, May 2002.
11. J. P. Marques-Silva and K. A. Sakallah. GRASP-A search algorithm for proposi-

tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.
12. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an

efficient SAT solver. In Proceedings of the Design Automation Conference, pages
530–535, June 2001.

13. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problems. Com-

putational Intelligence, 9(3):268–299, August 1993.
14. E. T. Richards and B. Richards. Non-systematic search and no-good learning.

Journal of Automated Reasoning, 24(4):483–533, 2000.
15. B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large

structured satisfiability problems. In Proceedings of the International Joint Con-

ference on Artificial Intelligence, pages 290–295, August 1993.
16. R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed

backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135–196, October 1977.

17. M. Yokoo. Weak-commitment search for solving satisfaction problems. In Proceed-

ings of the National Conference on Artificial Intelligence, pages 313–318, 1994.


