Hidden Structure in Unsatisfiable Random 3-SAT:
an Empirical Study

Inés Lynce and Joao Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal
{ines,jpms}@sat.inesc-id.pt

Abstract

Recent advances in propositional satisfiability (SAT)
include studying the hidden structure of unsatisfiable for-
mulas, i.e. explaining why a given formula is unsatisfi-
able. Although theoretical work on the topic has been de-
veloped in the past, only recently two empirical successful
approaches have been proposed: extracting unsatisfiable
cores and identifying strong backdoors. An unsatisfiable
core is a subset of clauses that defines a sub-formula that
is also unsatisfiable, whereas a strong backdoor defines a
subset of variables which assigned with all values allow
concluding that the formula is unsatisfiable. The contri-
bution of this paper is two-fold. First, we study the rela-
tion between the search complexity of unsatisfiable ran-
dom 3-SAT formulas and the sizes of unsatisfiable cores
and strong backdoors. For this purpose, we use an exist-
ing algorithm which uses an approximated approach for
calculating these values. Second, we introduce a new al-
gorithm that optimally reduces the size of unsatisfiable
cores and strong backdoors, thus giving more accurate re-
sults. Fxperimental results indicate that the search com-
plexity of unsatisfiable random 3-SAT formulas is related
with the size of unsatisfiable cores and strong backdoors.

1. Introduction

The utilization of SAT in practical applications has
motivated work on certifying SAT solvers (e.g. see [5]).
Given a problem instance, the certifier needs to be able
to verify that the computed truth assignment indeed
satisfies a satisfiable instance and that, for an unsatis-
fiable instance, a proof of unsatisfiability can be gener-
ated. Certifying a SAT solver for a satisfiable instance
is by far easier. Certifying a SAT solver for an unsat-
isfiable instance is hard. For an unsatisfiable instance,
one has to be able to explain why the instance can-
not be satisfied. For instance, one may provide a reso-
lution proof based on an unsatisfiable core [1, 9] or a

strong backdoor [8]. Broadly, an unsatisfiable core is a
sub-formula that is still unsatisfiable and a strong back-
door is a set of variables which define a search subspace
that suffices to prove unsatisfiability.

The main goal of this paper is to make an empiri-
cal study on hidden structure in typical case complex-
ity. Theoretical work has already been developed in the
past [3], but our focus is to make an empirical study.
With this purpose, we studied random 3-SAT formu-
las, which are well-know for exhibiting a phase tran-
sition when the ratio of clauses to variables is com-
pared with the search effort [2, 7]. The experimental
results given in the paper aim to relate the size of un-
satisfiable cores and strong backdoors with the search
effort required to solve random 3-SAT unsatisfiable in-
stances.

Empirical results have first been obtained using
zChaff, which is the only available solver to integrate
extraction of unsatisfiable cores [9]. However, this algo-
rithm has the drawback of giving approximate results,
meaning that there is no guarantee about the unsatisfi-
able core having the smallest number of clauses. Hence,
we have developed a new model and algorithm that can
be used to obtain the smallest size unsatisfiable cores
and strong backdoors. Results for the new algorithm
confirm the conclusions obtained by using zChaff.

This paper is organized as follows. In the next sec-
tion we give the definitions, followed by a discussion
on unsatisfiable cores and strong backdoors. In Sec-
tion 5 we give experimental data for running zChaff
on random 3-SAT instances. Section 6 relates hardness
with hidden structure. Afterwards, we introduce a new
model and algorithm for computing smallest size un-
satisfiable cores and strong backdoors. Finally, the pa-
per concludes by suggesting future research work.

2. Definitions

The standard SAT definitions of clauses, variables
and literals are assumed. A CNF formula ¢ is a con-

junction of clauses, a clause w is a disjunction of liter-
als, and a literal [or —l is either a variable or its com-
plement. The set of m clauses is denoted by 2 and the
set of n variables is denoted by X. For the a formula
@ and for each clause w we can also use set notation.
Hence, w € ¢ means that clause w is a clause of for-
mula ¢, and [€ w means that [is a literal of clause
w.

A clause is said to be satisfied if at least one of its lit-
erals assumes value 1, unsatisfied if all of its literals as-
sume value 0, unit if all but one literal assume value 0,
and unresolved otherwise. A formula is said to be sat-
isfied if all its clauses are satisfied, and is unsatisfied if
at least one clause is unsatisfied.

A truth assignment Ax: : X' C X — {true, false}
for a formula ¢ is a subset of assigned variables and
their corresponding binary values. An assignment A x-
is complete iff | X'| = n; otherwise it is partial. More-
over, p[Ax-] denotes formula ¢ after setting the par-
tial truth assignment Ax/. The SAT problem consists
in deciding whether there exists a truth assignment to
the variables such that the formula becomes satisfied.

Random 3-SAT instances are obtained by randomly
generating clauses with length 3. For an instance with
n variables and m clauses, each literal of the m clauses
is randomly selected from the 2n possible literals such
that each literal is selected with the same probability
of 1/2n. Clauses with repeated literals or with a literal
and its negation (tautological clauses) are discarded.

Random k-SAT formulas are particularly interest-
ing due to the occurrence of a phase-transition or
threshold phenomenon, i.e. a rapid change in complex-
ity when increasing (or decreasing) the ratio of clauses
to variables [2, 7]. For a small ratio almost all formu-
las are under-constrained and therefore satisfiable. As
the value of m/n increases, almost all instances are
over-constrained and therefore unsatisfiable. Experi-
ments strongly suggest that for random 3-SAT there
is a threshold at some critical ratio of clauses to vari-
ables m/n = 4.3 such that beyond this value the prob-
ability of generating a satisfiable instance drops to al-
most zero.

3. Unsatisfiable Cores

Research in unsatisfiable cores can be distinguished
between theoretical and experimental work. In the
theoretical field, unsatisfiable cores complexity has
been analyzed and formal algorithms have been pro-
posed [3, 4]. Experimental work includes contributions
of Bruni and Sassano [1] and Zhang and Malik [9]. Both
approaches extract unsatisfiable cores. The first ap-
proach proposes an adaptive search guided by clauses

hardness. The second approach is motivated by consid-
ering that a CNF formula is unsatisfiable iff it is pos-
sible to generate an empty clause by resolution from
the original clauses. In this case, the resolution steps
are emulated by the creation of nogoods. The unsatisfi-
able core is given by the set of original clauses involved
in the derivation of the empty clause.

Definition 1 (Unsatisfiable Core) Given a formula
w, UC is an unsatisfiable core for ¢ iff UC is a formula
s.t. UC'is unsatisfiable and UC C .

Observe that an unsatisfiable core can be defined as
any subset of the original formula that is unsatisfiable.
Consequently, there may exist many different unsatis-
fiable cores, with different number of clauses, for the
same problem instance, such that some of these cores
can be subsets of others. Also, and in the worst case,
the unsatisfiable core corresponds exactly to the set of
original clauses.

Definition 2 (Minimal Unsatisfiable Core) An
unsatisfiable core UC for ¢ is a minimal unsatisfi-

able core iff removing any clause w € UC from UC
implies that UC —{w} is satisfiable.

Definition 3 (Minimum Unsatisfiable Core) An
unsatisfiable core UC for ¢ is a minimum unsatisfi-
able core iff it is a minimal unsatisfiable core of minimum
cardinality.

Interestingly, the existing experimental work de-
scribed above [1, 9] has very little concern regarding
extraction of minimal unsatisfiable cores. Nonetheless,
the work in [9] proposes an iterative solution for reduc-
ing an unsatisfiable core, by iteratively invoking the
SAT solver on each computed sub-formula. This so-
lution, albeit capable of reducing the size of computed
unsatisfiable cores, does not provide any guarantees re-
garding the unsatisfiable core being either minimal or
minimum. However, in some practical applications it
may be useful identifying the minimum unsatisfiable
core of a given problem instance, i.e. the smallest num-
ber of clauses that make the instance unsatisfiable.

4. Strong Backdoors

A backdoor is a special subset of variables that char-
acterizes hidden structure in problem instances [8].
Backdoor definition depends on a sort of algorithm
called sub-solver. A sub-solver S always runs in poly-
nomial time. For example, S could be a solver that is
able to solve 2-SAT instances but rejects K-SAT in-
stances, with K > 3. Given a partial truth assignment
Ax: : X' € X — {true, false}, a sub-solver S is able
to solve the formula p[Ax/] in polynomial time.

Definition 4 (Backdoor) A nonempty subset Y of
the variables set X is a backdoor for p w.r.t. S if for some
partial truth assignment Ay : Y — {true, false}, S re-
turns a satisfying assignment of [Ay].

Clearly, the definition of backdoor given above only
applies to satisfiable formulas. Moreover, observe that
there may exist many backdoor sets for a given for-
mula. (In the worst case, there is only one backdoor
that corresponds exactly to the set of all variables.)

Definition 5 (Minimal Backdoor) A nonempty
backdoor set Y for ¢ w.r.t. S is minimal iff remov-
ing any variable v € Y from'Y implies that Y — {v} is
not a backdoor set.

Definition 6 (Minimum Backdoor) A nonempty
backdoor setY forp w.r.t. S is minimum iff it is a mini-
mal backdoor of minimum cardinality.

Since the definition of backdoor given above only
considers satisfiable instances, Williams et al. [8] intro-
duced the definition of strong backdoor for unsatisfi-
able instances. This definition holds for both satisfi-
able and unsatisfiable instances.

Definition 7 (Strong Backdoor) A nonempty sub-
set'Y of the variables set X is a strong backdoor for ¢
w.rt. S if for all Ay : Y — {true, false}, S returns a
satisfying assignment for o[Ay or concludes unsatisfia-
bility of p[Ay].

The definition of strong backdoor contrasts with
the definition of backdoor to the extent that for a
strong backdoor Y no truth assignment is specified.
This means that all possible assignments of Y have
to be considered. Observe that minimum and minimal
strong backdoors can be defined similarly to minimum
and minimal backdoors.

5. Random 3-SAT and zChaff

In this section we analyze zChaff’s results on ran-
dom 3-SAT instances. We used zChaff [6] for being an
efficient DLL-based SAT solver integrating the extrac-
tion of unsatisfiable cores. (Clearly, solving different
sub-formulas with any complete solver would also al-
low us to extract unsatisfiable cores, although not so
efficiently.)

Besides zChaff being enhanced with clause record-
ing, its behavior on solving 3-SAT instances is over-
all similar to the behavior reported in the literature
for a basic DLL solver (e.g. see [7]). This is explained
by clause learning being very useful for structured in-
stances that usually come from real-world domains,
rather than for random instances.

1200 T T T T T
Nodes Sat
. Nodes Unsat -------
1000 | \\\ Composite Nodes -~ i
@ 800 i
° \
o
= \
S 600 | E
o N
g}
E \
=} 5
Z 400 - N B
AN
200 / S i
0 1] 1 1 1 1]

2 3 4 5 6 7 8
Ratio clauses-to-variables

Figure 1. zChaff on solving random 3-SAT for-
mulas with 100 variables.

Figure 1 gives the number of nodes when using
zChalff for solving satisfiable and unsatisfiable random
3-SAT formulas with 100 variables as a function of
the ratio of clauses to variables. Observe that sim-
ilar results have been obtained in the past with a
DLL solver [2, 7]. Moreover, the graph would exhibit
a similar shape independently of the number of vari-
ables, although as the number of variables increases
the steeper are the curves. Overall, the maximum value
for the number of nodes is observed when the ratio of
clauses/variables is ~ 4.3.

The main conclusion is essentially that satisfiable
and unsatisfiable sets are quite different when com-
paring the number of nodes. Most satisfiable instances
are very easy to solve. Satisfiable instances with a
higher ratio clauses/variables are slightly more diffi-
cult to solve. Unsatisfiable instances with a small ratio
clauses/variables are the most difficult. Also, unsatisfi-
able instances with a larger ratio are still hard.

6. Hardness and Hidden Structure

Early studies on complexity relate hardness of k-
SAT instances with the ratio of the number of clauses
to the number of variables [2, 7]. Theoretical work has
already related hardness and hidden structure [3]. How-
ever, little effort has ever been made in order to em-
pirically relate these two aspects. Interestingly, recent
empirical work on unsatisfiable cores and strong back-
doors has brought some new insights on the topic.

Our first intuition was that hardness and the size
of unsatisfiable cores and strong backdoors would be
related due to the following reasons:

e Unsatisfiability is proved when the search space

is exhausted. For a DLL solver with an accurate
heuristic the search space can be reduced to 2°,
where b is the size of the minimum strong back-
door. Also, for a solver with clause recording, the
smallest is the size of the unsatisfiable core, the
smallest is the number of steps required to derive
the empty clause. (Although a recorded clause may
include more than one resolution step.)

e The probability of generating satisfiable instances
exhibits a phase-transition (see Figure 1), i.e. at
a certain value of the ratio of clauses to variables
the probability of generating an satisfiable clause
quickly decreases to 0% as we add clauses to the
formula. Conversely, the probability of generating
unsatisfiable instances quickly increases to 100%
at a certain value of the ratio of clauses to vari-
ables. Hence, unsatisfiable instances with a ratio
of clauses to variables m/n above a 4.3 are prob-
ably unsatisfiable with less than m clauses.

For example, let us consider the generation
of a typical unsatisfiable formula ¢ with n vari-
ables and m clauses, where m/n > 4.3. Con-
sider that formula ¢ has a set of clauses 2 =
{w1,...,;wp, ...,wn }. Suppose that ¢ is built by
adding clauses in §2 one at a time. Moreover, with
clauses {w1..wp—1} (p & m — 4.3n) the formula is
satisfiable but with all the clauses {w;..w,} the for-
mula is unsatisfiable. Thus the minimum unsatis-
fiable core size is < p. Furthermore, adding clauses
{wp+1, ..., wn } to the formula may only reduce the
size of the minimum unsatisfiable core.

Clearly, the same reasoning can be applied to strong
backdoors. This allows us to conclude that unsatisfiable
cores and strong backdoors sizes are related, to the ex-
tent that both sizes decrease with the increasing of the
ratio of the number of clauses to variables.

Figure 2 shows the evolution on the size of unsatis-
fiable cores and strong backdoors. More precisely, re-
sults indicate the percentage of clauses in the unsatis-
fiable cores with respect to the total number of clauses
and the percentage of variables in the strong backdoors
with respect to the total number of variables. Results
are given for random unsatisfiable 3-SAT formulas with
50, 100 and 150 variables, as a function of the ratio of
the number of clauses to variables.

The size of unsatisfiable cores has been computed
by zChaff. The size of strong backdoors has been ob-
tained from the corresponding unsatisfiable cores: for
each instance, all variables in the clauses of the un-
satisfiable core have been considered to be part of the
strong backdoor. This means that each strong backdoor
Y for a formula ¢ has been defined w.r.t. a sub-solver

100 —=v==—T == T T T T T
80 N R
60

40

Cores n=50
Backdoors n=50 -------
20 - Cores n=100 --------
Backdoors n=100 -~
Cores n=150 ---~-
Ba(lzkdoorsI n:150I S

% of clauses/variables in cores/backdoors

1 1 1 1 1
35 4 45 5 55 6 6.5 7 75 8
Ratio clauses-to-variables

0

Figure 2. Unsatisfiable cores and strong back-
doors for unsatisfiable random 3-SAT formulas.

S that for all assignments Ay : Y — {true, false} sim-
ply checks that at least one clause is unsatisfied and fi-
nally concludes unsatisfiability of p[Ay].

With respect to the size of unsatisfiable cores, re-
sults in Figure 2 clearly confirm our intuition. Observe
that the reduction in the size of unsatisfiable cores is
not only due to the increasing number of clauses with
the increasing ratio of clauses to variables. Indeed, the
absolute value for the size of unsatisfiable cores also
decreases as a function of the ratio clauses/variables.
Hence, one may conclude that harder instances have
unsatisfiable cores much larger than easier instances
with a higher ratio of clauses to variables. In addition,
the relation between hardness and strong backdoors
size is also suggested, although not so clearly. One may
argue that the sub-solver S involved in the extraction
of the strong backdoor does not favor getting a small
strong backdoor. (Using different sub-solvers is future
research work.)

7. Accurating Results

The previous plot exhibits a clear trend towards re-
lating hardness with the size of unsatisfiable cores and
strong backdoors. However, one may strengthen the ob-
tained conclusions with more accurate results. In this
section, we provide a model for identifying minimum
and minimal unsatisfiable cores and strong backdoors.

Clearly, a brute-force algorithm can be used for ex-
ploring the whole search space while keeping track of
the minimum unsatisfiable core. But we can do signifi-
cantly better: we can emulate hiding each of the clauses
in order to perform the search in all possible subsets of
clauses. Also, we can learn from the conflicts.

We assume that each formula ¢ is defined over
n variables, X = {z1,...,z,}, and has m clauses,
Q= {w1,...,wn}. We start by defining a set S of m
new variables, S = {s1,..., sy}, and create a new for-
mula ¢’ defined on n + m variables, X U S, and with
m clauses, = {w],...,w,, }. Each clause w} € ¢’ is de-
fined from a corresponding clause w; € ¢ and from a
variable s; s.t. w} = {—s;} Uw;.

Example 7.1 Consider formula ¢ having variables X
={x1, x2, 23} and clauses Q ={w1, ..., wg}:

w1 =T V —T3 Wy = X2 V T3

Wo = T2 W5:l‘2\/9§3

w3 = T2 V T3 we = x1 VT2 V X3

Given the CNF formula ¢ given above, the new for-
mula ¢’ is defined on variables X U S = {x1, x2, x3, 51,
...y 86} and clauses Q' ={wi, ..., wg}, such that:

wp=-s1VaVorg wy =8y Vxe Voxs
wh = =89 V X9 wh =85 Vaa Vs
wh=-83V e Vg wi=—sgVoxr VgV ors

Observe that S variables can be interpreted as clause
selectors which allow considering or not each clause w;.
For example, assigning s; = 0 makes clause w) satis-
fied and therefore variable x5 does not have to be as-
signed value 1, as it was for the original clause wo = x5.
Moreover, ¢’ is readily satisfiable by setting all s; vari-
ables to 0.

Let us now consider a backtrack search SAT solver
where decisions are first made on the S variables (defin-
ing the S space) and afterwards on the X variables
(defining the X space); hence, each assignment to the
S variables defines a potential core. Now, for each as-
signment to the S variables, the resulting sub-formula
may be satisfiable or unsatisfiable.

An unsatisfiable core is computed whenever the
search backtracks from the X space to the S space,
meaning that there is no solution to the formula given
the current S assignments, i.e. the original formula ¢
was proved to be unsatisfiable. For each unsatisfiable
sub-formula, the number of S variables assigned value
1 indicates how many clauses are contained in the un-
satisfiable core. The minimum unsatisfiable core is ob-
tained from the unsatisfiable sub-formula with the least
number of S variables assigned value 1. Moreover, for
SAT solvers with clause recording, a clause is recorded
after each conflict that allows backtracking from the X
space to the S space. Hence, an unsatisfiable core can
be easily obtained from the new recorded clause. Ob-
serve that this unsatisfiable core is restricted to the
clauses involved in the derivation of the empty clause.

Example 7.2 Given formula ¢ from Ezample 7.1,
recording clause wl, = sV 183V =184 means that the un-
satisfiable core {wa, w3, wa} has been identified.

The key challenge of the proposed model is the
search space. For the original problem instance the
search space is 2", where n is the number of vari-
ables, whereas for the transformed problem instance
the search space becomes 2"+, where m is the num-
ber of clauses. Nevertheless, a few key optimizations
can be applied. First, the SAT-based algorithm can
start with an upper bound on the size of the minimum
unsatisfiable core. For this purpose, the algorithm pro-
posed in [9] can be used. Hence, when searching for
the minimum unsatisfiable core, we just need to con-
sider assignments to the S variables which yield smaller
unsatisfiable cores. This additional constraint can be
modeled as a cardinality constraint. Furthermore, each
computed unsatisfiable core can be used for backtrack-
ing non-chronologically on the S variables, thus poten-
tially reducing the search space.

Besides the traditional clause recording scheme,
where each new clause corresponds to a sequence of res-
olution steps, a new clause is recorded whenever a
solution is found. The new clause contains all the S lit-
erals assigned value 0 (thus satisfying the correspond-
ing clause), except for those clauses that would also
be satisfied by the X variables in the computed solu-
tion.

Example 7.3 Consider again formula ¢’ from Ezam-
ple 7.1, and suppose that the current set of assignments
is {81=0, s9=0, s3=1, s4=1, s5=0, s¢=1, x1=1, x2=0,
x3=0}. At this stage of the search, all clauses are satis-
fied, and therefore a solution is found. Consequently, a
new clause is recorded to avoid finding again the same so-
lution and also to force finding an unsatisfiable core in the
future.

Although S literals assigned value 0 are s1, s3 and ss,
clause wy is also satisfied by assigning v1 = 1. Hence,
the new recorded clause iswf = sa V s5. The new clause
means that for finding an unsatisfiable core either clause
wo or clause ws has to be part of the formula.

Finally, observe that minimal unsatisfiable cores can
also be obtained by this algorithm as long as the solver
is given any unsatisfiable sub-formula instead of the
whole formula.

A similar algorithm can be used to obtain a mini-
mum strong backdoor. Again, the idea is to extract a
strong backdoor from the corresponding unsatisfiable
core. Besides having additional variables for selecting
clauses, we also need a set T" of new variables to be used
as selectors for variables in the original formula. (Sat-
isfying variable ¢; € T implies variable x; being part
of a strong backdoor.) For each variable x; a new con-
straint is added,

ti ad \/ S

SES;

40

20

Minimal Cores
Lazy Cores -------

Minimal Strong Backdoors --------
LazY Strong Backdloors ;

% of clauses/variables in cores/backdoors

0

35 4 45 5 55 6 6.5 7 75 8
Ratio clauses-to-variables

Figure 3. Minimal unsatisfiable cores and strong
backdoors for unsatisfiable random 3-SAT.

where S; is the subset of S variables occurring in
clauses with x; or —x;. The minimum strong backdoor
is obtained from the unsatisfiable sub-formula with the
least number of T variables assigned value 1. With these
additional constraints, we guarantee that a variable x;
is part of a strong backdoor iff a clause with z; or —x;
is part of a given unsatisfiable core.

Example 7.4 Given formula ¢ from Example 7.1, the
CNF clauses to be added w.r.t. variable x1 would be the
following: —t1 V s1 V sg, 81 V t1 and —sg V 1.

The proposed algorithm is able to identify minimum
or minimal strong backdoors, depending on the input
being either the original formula or an unsatisfiable
sub-formula. A key optimization consists in using the
size of the smallest strong backdoor extracted so far as
a cardinality constraint.

Figure 3 gives the size of minimal unsatisfiable cores
and strong backdoors as a percentage of clauses and
variables in the formula, respectively. Due to the com-
plexity of this optimization problem, the data is re-
stricted to the minimal (and not minimum) unsatisfi-
able cores and strong backdoors for random 3-SAT for-
mulas with only 50 variables. However, it is predictable
that the same figures would be obtained for minimum
values and for instances with more variables.

Interesting conclusions may be drawn from Figure 3.
First of all, it is clear that the values obtained by a
lazy approach do not correspond to minimal values.
Second, it is possible to relate the values for the lazy
approach with the minimal values by an almost con-
stant gap. Finally, this plot confirms that hardness can
be related with hidden structure, i.e. hard unsatisfi-
able random 3-SAT formulas exhibit larger unsatisfi-
able cores and strong backdoors. Again, the relation

between hardness and strong backdoors is still not be-
ing as clear as the relation between hardness and un-
satisfiable cores, although we believe that this is due to
the sub-solver used being far from giving small back-
doors.

8. Conclusions and Future Work

In this paper we studied the relation between hard-
ness of unsatisfiable random 3-SAT formulas and the
sizes of unsatisfiable cores and strong backdoors. Be-
sides using an existing algorithm, we introduced an al-
gorithm that is able to identify minimal or minimum
unsatisfiable cores and strong backdoors. Experimen-
tal results indicate that hard unsatisfiable instances ex-
hibit larger unsatisfiable cores and strong backdoors.
Future research work should definitely consider other
sub-solvers for identifying strong backdoors. In addi-
tion, the experimental study should be extended to
structured real-world instances.

References

[1] R.Bruniand A. Sassano. Restoring satisfiability or main-
taining unsatisfiability by finding small unsatisfiable sub-
formulae. In LICS Workshop on Theory and Applications
of Satisfiability Testing, June 2001.

[2] P.Cheeseman, B. Kanefsky, and W. M. Taylor. Where the
really hard problems are. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages
331-337, 1991.

[3] V. Chvtal and E. Szemerédi. Many hard examples for
resolution. Journal of the ACM, 35(4):759-768, October
1988.

[4] H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-
time recognition of minimal unsatisfiable formulas with
fixed clause-variable difference. Theoretical Computer
Science, 289(1):503-516, 2002.

[5] K. L. McMillan. Interpolation and SAT-based model
checking. In Proceedings of Computer Aided Verification,
2003.

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Engineering an efficient SAT solver. In Proceed-
ings of the Design Automation Conference, pages 530
535, June 2001.

[7] B. Selman, D. G. Mitchell, and H. J. Levesque. Gener-
ating hard satisfiability problems. Artificial Intelligence,
81(1-2):17-29, 1996.

[8] R. Williams, C. P. Gomes, and B. Selman. Backdoors to
typical case complexity. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 2003.

[9] L.ZhangandS. Malik. Validating SAT solvers using an in-
dependent resolution-based checker: Practical implemen-
tations and other applications. In Proceedings of the De-
sign and Test in Europe Conference, pages 10880-10885,
March 2003.

