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Abstract. Finding out that a SAT problem instance F is unsatisfiable
is not enough for applications, where good reasons are needed for ex-
plaining the inconsistency (so that for example the inconsistency may
be repaired). Previous attempts of finding such good reasons focused
on finding some minimally unsatisfiable sub-clause-set F’ of F, which in
general suffers from the non-uniqueness of F’ (and thus it will only find
some reason, albeit there might be others).
In our work, we develop a fuller approach, enabling a more fine-grained
analysis of necessity and redundancy of clauses, supported by meaningful
semantical and proof-theoretical characterisations. We combine known
techniques for searching and enumerating minimally unsatisfiable sub-
clause-sets with (full) autarky search. To illustrate our techniques, we
give a detailed analysis of well-known industrial problem instances.

1 Introduction

Explaining the causes of unsatisfiability of Boolean formulas is a key requirement
in a number of practical applications. A paradigmatic example is SAT-based
model checking, where analysis of unsatisfiability is an essential step ([7,22])
for ensuring completeness of bounded model checking ([3]). Additional examples
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?? Supported by FCT under research project POSC/EIA/61852/2004.

http://cs-svr1.swan.ac.uk/~csoliver�
http://sat.inesc-id.pt/~ines�
http://www.ecs.soton.ac.uk/~jpms�


include fixing wire routing in FPGAs ([24]), and repairing inconsistent knowledge
from a knowledge base ([21]).

Existing work on finding the causes of unsatisfiability can be broadly organ-
ised into two main categories. The first category includes work on obtaining a
reasonable unsatisfiable sub-formula, with no guarantees with respect to the size
of the sub-formula ([5,11,28,4]). The second category includes work that pro-
vides some guarantees on the computed sub-formulas ([10,20,23]). Most existing
work has focused on computing one minimally unsatisfiable sub-formula or all
minimally unsatisfiable sub-formulas. Thus also relevant here is the literature
on minimally unsatisfiable clause-sets, for example the characterisation of min-
imally unsatisfiable clause-sets of small deficiency ([1,9,6,12]), where [12] might
be of special interest here since it provides an algorithm (based on matroids)
searching for “simple” minimally unsatisfiable sub-clause-sets.

In this paper now we seek to obtain a more differentiated picture of the (po-
tentially many and complicated) causes of unsatisfiability by a characterisation
of (single) clauses based on their contribution to the causes of unsatisfiability.
The following subsection gives on overview on the this categorisation of clauses.

From necessary to unusable clauses The problem is to find some “core” in
an unsatisfiable clause-set F : Previous attempts were (typically) looking for some
minimally unsatisfiable sub-clause-set F ′ ⊆ F , that is, selecting some element
F ′ ∈ MU(F ) from the set of all minimally unsatisfiable sub-clause-sets of F .
The problem here is that MU(F ) in general has many elements, and thus it is
hard to give meaning to this process. So let us examine the role the elements of
F play for the unsatisfiability of F .

At the base level we have necessary clauses, which are clauses whose removal
renders F satisfiable. These clauses can also be characterised by the condition
that they must be used in every resolution refutation of F , and the set of all
necessary clauses is

⋂
MU(F ) (the intersection of all minimally unsatisfiable

sub-clause-sets). Determining
⋂

MU(F ) is not too expensive (assuming the SAT
decision for F and sub-clause-sets is relatively easy), and every “core analysis”
of F should determine these clauses as the core parts of F . It is

⋂
MU(F ) itself

unsatisfiable if and only if F has exactly one minimally unsatisfiable sub-clause-
set (that is, |MU(F )| = 1 holds), and in this case our job is finished. However,
in many situations we do not have a unique minimally unsatisfiable core, but⋂

MU(F ) has to be “completed” in some sense to achieve unsatisfiability.
At the next level we consider potentially necessary clauses, which are clauses

which can become necessary clauses when removing some other (appropriately
chosen) clauses. The set of all potentially necessary clauses is

⋃
MU(F ) (the

union of all minimally unsatisfiable sub-clause-sets);
⋃

MU(F ) is unsatisfiable
and seems to be the best choice for a canonical unsatisfiable core of F . However,
it is harder to compute than

⋂
MU(F ), and the best method in general seems

to consist in enumerating in some way all elements of MU(F ). Clauses which
are potentially necessary but which are not necessary are called only potentially
necessary ; these are clauses which make an essential contribution to the unsat-



isfiability of F , however not in a unique sense (other clauses may play this role
as well).

⋃
MU(F ) is the set of all clauses in F which can be forced to be used in

every resolution refutation by removing some other clauses. Now at the third
and weakest level of our categorisation of “core clauses” we consider all usable
clauses, that is, all clauses which can be used in some resolution refutation
(without dead ends); the set of all usable clauses of F is Na(F ) (see below for
an explanation for this notation). Clauses which are usable but not potentially
necessary are called only usable; these clauses are superfluous from the semanti-
cal point of view (if C is only usable in F , and F ′ ⊆ F is unsatisfiable, then also
F ′ \{C} is unsatisfiable), however their use may considerably shorten resolution
refutations of F , as can be seen by choosing F as a pigeonhole formula extended
by appropriate clauses introduced by Extended Resolution: Those new clauses
are only usable, but without them pigeonhole formulas require exponential res-
olution refutations, while with them resolution refutations become polynomial.

Dual to these three categories of “necessity” we have the corresponding de-
grees of “redundancy”, where a SAT solver might aim at removing redundant
clauses to make its life easier; however this also can backfire (by making the
problem harder for the solver and harder even for non-deterministic proof pro-
cedures). The weakest notion is given by unnecessary clauses; the set of all unnec-
essary clauses is F \⋂

MU(F ). Removing such a clause still leaves the clause-set
unsatisfiable, but in general we cannot remove two unnecessary clauses simulta-
neously (after removal of some clauses other clauses might become necessary).

At the next (stronger) level we have never necessary clauses, that is, clauses
which are not potentially necessary; the set of all never necessary clauses is
F \ ⋃

MU(F ). Here now we can remove several never necessary clauses at the
same time, and still we are guaranteed to maintain unsatisfiability; however it
might be that after removal of never necessary clauses the resolution complexity
is (much) higher than before.

For necessary clauses we have a “proof-theoretical” characterisation, namely
that they must be used in any resolution refutation, and an equivalent “se-
mantical” characterisation, namely that removal of them renders the clause-set
satisfiable. Now for unnecessary clauses we also have a semantical criterion,
namely a clause is never necessary iff it is contained in every maximal satisfiable
sub-clause-set.

Finally the strongest notion of redundancy is given by unusable clauses;
the set of unusable clauses is F \ Na(F ). These clauses can always be removed
without any harm (that is, at least for a non-deterministic resolution-based SAT
algorithm). As shown in [16], a clause C ∈ F is unusable if and only if there
exists an autarky for F satisfying C. This enables a non-trivial computation of
Na(F ) (as discussed in Section 4), which is among the categorisation algorithms
considered here the least expensive one, and thus can be used for example as a
preprocessing step.



Organisation of the paper The paper is organised as follows. The next sec-
tion introduces the notations used throughout the paper. Section 3 develops the
proposed clause categorisation for unsatisfiable clause sets. A discussion on the
computation of the lean kernel is included in Section 4. Section 5 presents results
for the well-known Daimler-Chrysler’s [27] problem instances. Finally, Section 6
concludes the paper and outlines future research work.

2 Preliminaries

Clause-sets and autarkies We are using a standard environment for (boolean)
clause-sets, partial assignments and autarkies; see [16,17] for further details and
background. Clauses are complement-free (i.e., non-tautological) sets of literals,
clause-sets are sets of clauses. The application of a partial assignment ϕ to a
clause-set F is denoted by ϕ ∗ F . An autarky for a clause-set F is a partial as-
signment ϕ such that every clause C ∈ F touched by ϕ (i.e., var(ϕ)∩var(C) 6= ∅)
is satisfied by ϕ.4) Applying autarkies is a satisfiability-equivalent reduction, and
repeating the process until no further autarkies are found yields the (uniquely
determined) lean kernel Na(F ) ⊆ F .

Hypergraphs A hypergraph here is a pair G = (V, E), where V is a (finite) set
of vertices and E ⊆ P(V ) is a set of subsets. Let {(G) := (V (G), {V (G)\E : E ∈
E(G)}) be the complement hypergraph of G. Obviously we have {({(G)) = G.
A transversal of G is a subset T ⊆ V (G) such that for all E ∈ E(G) we have
T ∩ E 6= ∅; the hypergraph with vertex set V and hyperedge set the set of
all minimal transversals of G is denoted by Tr(G); we have the well-known
fundamental fact (see for example [2]) Tr(Tr(G)) = min(G), where min(G) is the
hypergraph with vertex set V (G) and hyperedges all inclusion minimal elements
of G (the dual operator is max(G)). An independent set of G is a subset I ⊆ V (G)
such that V (G) \ I is a transversal of G; in other words, the independent sets
of G are the subsets I ⊆ V (G) such that no hyperedge E ∈ E(G) with E ⊆ I
exists. Let Ind(G) denote the hypergraph with vertex set G and as hyperedges
all maximal independent sets of G. By definition we have Ind(G) = {(Tr(G)).

Sub-clause-sets For a clause-set F let USAT (F ) be the hypergraph with
vertex set F and hyperedges the set of all unsatisfiable sub-clause-sets of F ,
and let MU(F ) := min(USAT (F )). Thus MU(F ) has as hyperedges all min-
imally unsatisfiable sub-clause-sets of F , and MU(F ) = ∅ ⇔ F ∈ SAT . And
let SAT (F ) be the hypergraph with vertex set F and hyperedges the set of all
satisfiable sub-clause-sets of F , and MS(F ) := max(SAT (F )). Thus MS(F ) has
as hyperedges all maximal satisfiable sub-clause-sets of F , and F ∈ MS(F ) ⇔
F ∈ SAT ; we always have MS(F ) 6= ∅. Finally let CMU(F ) := {(MU(F )) and

4) Equivalently, ϕ is an autarky for F iff for all F ′ ⊆ F we have ϕ ∗ F ′ ⊆ F ′.



CMS(F ) := {(MS(F )). In [20] the observation of Bailey and Stuckey has been
used that for every clause-set F we have

MU(F ) = Tr(CMS(F )). (1)

This can be shown as follows: By definition we have MS(F ) = Ind(MU(F )),
whence MS(F ) = {(Tr(MU(F ))), and thus {(MS(F )) = Tr(MU(F )); applying
Tr to both sides we get Tr({(MS(F ))) = Tr(CMS(F )) = MU(F ).

3 Classification

Let F ∈ USAT be an unsatisfiable clause-set for this section. When we speak of
a resolution refutation “using” a clause C then we mean the refutation uses C as
an axiom (and we consider here only resolution refutations without “dead ends”;
since we are not interested in resolution complexity here this can be accomplished
most easily by only considering tree resolution refutations).

3.1 Necessary clauses

The highest degree of necessity is given by “necessary clauses”, where a clause
C ∈ F is called necessary if every resolution refutation of F must use C.
By completeness of resolution, a clause C is necessary iff there exists a partial
assignment ϕ satisfying F \ {C}. So we can compute all necessary clauses by
running through all clauses and checking whether removal renders the clause-set
satisfiable. The set of all necessary clauses of F is

⋂
MU(F ). Clause-sets with

F =
⋂

MU(F ), that is, clause-sets where every clause is necessary, are exactly the
minimally unsatisfiable clause-sets. So the complexity of computing

⋂
MU(F )

is closely related to deciding whether a clause-set F is minimally unsatisfiable,
which is a DP -complete decision problem (see [25]). The corresponding (weakest)
notion of redundancy is that of clauses which are unnecessary, which are clauses
C ∈ F such that F \ {C} still is unsatisfiable, or, equivalently, clauses for which
resolution refutations of F exist not using this clause.

3.2 Potentially necessary clauses

C ∈ F is called potentially necessary if there exists an unsatisfiable F ′ ⊆ F
with C ∈ F ′ such that C is necessary for F ′. In other words, potentially necessary
clauses become necessary (can be forced into every resolution refutation) by
removing some other clauses. Obviously the set of potentially necessary clauses
is

⋃
MU(F ) (and every necessary clause is also potentially necessary). The class

of (unsatisfiable) clause-sets F with F =
⋃

MU(F ) (unsatisfiable clause-sets,
where every clause is potentially necessary) has been considered in [16], and it
is mentioned that these clause-sets are exactly those clause-sets obtained from
minimally unsatisfiable clause-sets by the operation of crossing out variables: The
operation of crossing out a set of variables V in F is denoted by V ∗F . That if F is



minimally unsatisfiable, then V ∗F is the union of minimally unsatisfiable clause-
sets, has been shown in [26]. For the converse direction consider the characteristic
case of two minimally unsatisfiable clause-sets F1, F2. Choose a new variable v
and let F := {C ∪ {v} : C ∈ F1} ∪ {C ∪ {v} : C ∈ F2}; obviously F is minimally
unsatisfiable and {v} ∗ F = F1 ∪ F2.

So given (unsatisfiable) F with F =
⋃

MU(F ), we have a (characteristic)
representation F = V ∗F0 for some minimally unsatisfiable F0; it is conceivable
but not known to the authors whether such a representation might be useful
(considering “good” F0). The complexity of deciding whether for a clause-set
F we have F =

⋃
MU(F ) is not known to the authors; by definition the prob-

lem is in PSPACE, and it seems to be a very hard problem. See below for the
computation of

⋃
MU(F ).

Clauses which are potentially necessary, but which are not necessary (i.e., the
clauses in

⋃
MU(F ) \ ⋂

MU(F )), are called only potentially necessary. By
Lemma 4.3 in [12] we have

⋃
MU(F ) = F \⋂

MS(F ), i.e., a clause is potentially
necessary iff there exists a maximally satisfiable sub-clause-set not containing
this clause, or, in other words, a clause is not potentially necessary iff the clause
is in every maximally satisfiable sub-clause-set. Thus for computing

⋃
MU(F )

we see two possibilities:

1. Enumerating MU(F ) and computing
⋃

MU(F ).
2. Enumerating MS(F ) and computing

⋃
MU(F ) = F \⋂

MS(F ) (this is more
efficient than using (1), since for applying (1) we must store all elements of
MS(F ), and furthermore it is quite possible that while MS(F ) is a small set,
MU(F ) is a big set).

The corresponding (medium) degree of redundancy is given by clauses which
are never necessary (not potentially necessary), that is, clauses which can
not be forced into resolution refutations by removing some other clauses, or
equivalently, clauses which are contained in every maximally satisfiable sub-
clause-set. A clause which is never necessary is also unnecessary. Blocked clauses
(see [14]), and, more generally, clauses eliminated by repeated elimination of
blocked clauses, are never necessary; an interesting examples for such clauses
are clauses introduced by extended resolution (see [15]).

3.3 Usable clauses

The weakest degree of necessity if given by “usable clauses”, where C ∈ F
is called usable if there exists some tree resolution refutation of F using C.
Obviously every potentially necessary clause is a usable clause. By Theorem
3.16 in [16] the set of usable clauses is exactly the lean kernel Na(F ). The set
of F with Na(F ) = F , which are called lean clause-sets (every clause is usable)
has been studied in [17], and the decision problem whether a clause-set is lean
has been shown to be co-NP complete. In Section 4 we discuss the computation
of the lean kernel. The corresponding strongest degree of redundancy is given
by unusable clauses, clauses C ∈ F which are not used in any resolution



refutation, which are exactly the clauses for which an autarky ϕ for F exists
satisfying C. An unusable clause is never necessary. Clauses which are never
necessary but are which are usable are called only usable, and are given for
example by clauses (successfully) introduced by Extended Resolution: They are
never necessary as discussed before, but they are usable (since we assumed the
introduction to be “successful”), and actually these clauses can exponentially
speed up the resolution refutation as shown in [8].

3.4 Discussion

Figure 1 relates the concepts introduced above. Consider a formula with 9
clauses (represented with bullets). These clauses can be partitioned into nec-
essary clauses (nc) and unnecessary clauses (un). The unnecessary clauses can
be partitioned into only potentially necessary clauses (opn) and never necessary
clauses (nn). The (disjoint) union of the only potentially necessary clauses with
the necessary clauses gives the potentially necessary clauses (pn). In addition,
the never necessary clauses can be partitioned into only usable clauses (ou) and
unusable clauses (uu). The (disjoint) union of the potentially necessary clauses
with the only usable clauses gives the usable clauses (us).

nc

pn

opn

un

ou

nn
uu

us

Fig. 1. Clause classification: an example.

3.5 Finding the cause

Given is an unsatisfiable clause-set F , which is partitioned into F = Fs ·∪Fu,
where Fs come from “system axioms”, while Fu comes from a specific “user re-
quirements”. The unsatisfiability of F means that the user requirements together
with the system axioms are inconsistent, and the task now is to find “the cause”
of this problem.

First if Fu is already unsatisfiable, then the user made a “silly mistake”,
while if Fs already is unsatisfiable, then the whole system is corrupted. So we
assume that Fu as well as Fs is satisfiable. The natural first step now is to



consider
⋂

MU(F ). The best case is that
⋂

MU(F ) is already unsatisfiable (i.e.,
F has a unique minimally unsatisfiable sub-clause-set). Now Fu ∩

⋂
MU(F )

are the critical user requirements, which together with the system properties
Fs ∩

⋂
MU(F ) yield the (unique) contradiction. So assume that

⋂
MU(F ) is

satisfiable in the sequel.

That Fs ∩
⋂

MU(F ) 6= ∅ is the case typically does not reveal much; it can be
a very basic requirement which when dropped (or when “some piece is broken
out of it”) renders the whole system meaningless (if for example numbers would
be used, then we could have “if addition wouldn’t be addition, then there would
be no problem”). However if Fu ∩

⋂
MU(F ) 6= ∅ holds, then this could contain

valuable information: These clauses could also code some very basic part of the
user requirement, where without these requirements the whole user requirement
breaks down, and then (again) we do not know much more than before; if however
at least some clauses code some very specific requirement, then perhaps with
their identification already the whole problem might have been solved.

In general the consideration of
⋂

MU(F ) is not enough to find “the cause”
of the unsatisfiability of F . Finding some F ′ ∈ MU(F ) definitely yields some
information: F ′ will contain some system clauses and some user clauses which
together are inconsistent, however this inconsistency might not be the only in-
consistency. Also if F \ F ′ is satisfiable (which is guaranteed if

⋂
MU(F ) 6= ∅)

we do not gain much, again because some very fundamental pieces might now be
missing. So what really is of central importance here is

⋃
MU(F ). The clauses

Fu ∩
⋃

MU(F ) are exactly all (pieces) of user requirements which can cause
trouble, while the clauses Fs ∩

⋃
MU(F ) are exactly all pieces of basic require-

ments needed (under certain circumstances) to complete the contraction. The
clauses in F \⋃

MU(F ), the unnecessary clauses, might be helpful to see some
contradiction with less effort, but they are never really needed.

So what now is the role of Na(F ) (the lean kernel, or, in other words, the set
of usable clauses) here?! To identify the causes of inconsistency the clauses in
Na(F ) \⋃

MU(F ) (the only usable clauses) are not needed. One role of Na(F )
is as a stepping stone for the computation of

⋃
MU(F ), since the computation

of Na(F ) is easier than the computation of
⋃

MU(F ), and removing the “fat”
helps to get faster to the potentially necessary clauses. Another, quite different
role now is, that the set F \Na(F ) of unusable clauses are the clauses satisfied by
a maximal autarky ϕ; and this ϕ can be considered as the largest “conservative
model”, which doesn’t remove any possibilities to satisfy further clauses.

Satisfying any clause from Na(F ) necessarily implies that some other clause
is touched but not satisfied. Trying to satisfy these touched clauses will lead to
an element F ′ ∈ MS(F ), characterised by the condition that every satisfying
assignment ϕ for F ′ must falsify all clauses in F \ F ′, whence these satisfying
assignments are normally not useful here. In a certain sense a maximal autarky ϕ
for F is the largest generally meaningful model for some part of F . Finding such a
model yields a fulfilment of the “really harmless” user requirements. So with the
set of potentially necessary clauses we covered all causes of the unsatisfiability,



while with the set of unusable clauses we covered everything what can be “truly
satisfied” (without remorse).

4 Computing the lean kernel

In Section 6 of [13] the following procedure for the computation of a “maximal
autarky” ϕ for F (that is, an autarky ϕ for F with ϕ ∗ F = Na(F )) has been
described, using a SAT solver A which for a satisfying input F returns a satis-
fying assignment ϕ with var(ϕ) ⊆ var(F ), while for an unsatisfiable input F a
set V ⊆ var(F ) of variables is returned which is the set of variables used in some
(tree) resolution refutation of F :

1. Apply A(F ); if F is satisfiable then return ϕ.
2. Otherwise let F := F [V ], and go to Step 1.

Here F [V ] is defined as (V ∗ F ) \ {⊥}, where V ∗ F denotes the operation of
removing all literals x from F with var(x) ∈ V , while ⊥ is the empty clause. So
the above procedure can be outlined as follows: Apply the given SAT solver A
to F . If we obtain a satisfying assignment, then ϕ is a maximal autarky for the
original input (and applying it we obtain the lean kernel). Otherwise we obtain a
set V of variable used in a resolution refutation of F ; cross out all these variables
from F , remove the (necessarily obtained) empty clause, and repeat the process.

Correctness follows immediately with Theorem 3.16 in [16] together with
Lemma 3.5 in [16]. More specifically, Lemma 3.5 in [16] guarantees that if by
iterated reduction F → F [V ] for arbitrary sets V of variables at the end we
obtain some satisfiable F ∗ then any satisfying assignment ϕ for F ∗ with var(ϕ) ⊆
var(F ∗) is an autarky for F (thus the above process returns only autarkies). For
the other direction (the non-trivial part) Theorem 3.16 guarantees that by using
such V coming from resolution refutations we don’t loose any autarky.

The computation of V by a SAT solver can be done following directly the
correspondence between tree resolution refutations and semantic trees (for a de-
tailed treatment see [18]). Since the set of used variables needs to be maintained
only on the active path, the space required by this algorithm is (only) quadratic
in the input size; the only implementation of this algorithm we are aware of is
in OKsolver (as participated in the SAT 2002 competition), providing an imple-
mentation of “intelligent backtracking” without learning; see [19] for a detailed
investigation.

By heuristical reasoning, a procedure computing some unsatisfiable F ′ ⊆
Na(F ) for unsatisfiable F has been given in [28], also based on computing reso-
lution refutations. Compared to the autarky approach, F ′ is some set of usable
clauses, while Na(F ) is the set of all usable clauses. Furthermore Na(F ) comes
with an autarky (a satisfying assignment for all the other clauses, not touching
Na(F )), and the computation of Na(F ) can be done quite space-efficient (as out-
lined above), while [28] computes the whole resolution tree, and thus the space
requirements can be exponential in the input size.



5 Experimental results

The main goal of this section is to analyse a set of problem instances with
respect to the concepts described above. To achieve this goal, we have selected
38 problem instances from the DC family ([27])5). These instances are obtained
from the validation and verification of automotive product configuration data
and encode different consistency properties of the configuration data base which
is used to configure Daimler Chrysler’s Mercedes car lines. For example, some
instances refer to the stability of the order completion process (SZ), while others
refer to the order independence of the completion process (RZ) or to superfluous
parts (UT). We have chosen these instances because they are well known for
having small minimal unsatisfiable cores and usually more than one minimal
unsatisfiable core [20]. Hence, they provide an interesting testbed for the new
concepts introduced in the paper.

The size of DC problem instances analysed in this paper ranges from 1659
to 1909 variables and 4496 to 8686 clauses. However, and as mentioned in [20],
these formulas have a few repeated clauses and also repeated literals in clauses.
Also, there are some variable codes that are not used. Consequently, we have
performed a preprocessing step to eliminate the repeated clauses and literals,
as well as non-used variables. In the resulting formulas the number of variables
ranges from 1513 to 1805 and the number of clauses ranges from 4013 to 7562.

Table 1 gives the number of variables, the number of clauses and the average
clause size for each of the 38 problem instances from the DC family. Table 1 also
gives the number of minimal unsatisfiable sub-clause-sets (#MU) contained in
each formula, the number of maximal satisfiable sub-clause-sets (#MS) (recall
(1)), the percentage of necessary clauses (nc) and the percentage of the number of
clauses in the smallest (min) and largest (max) minimal unsatisfiable sub-clause-
set. Furthermore Table 1 shows the percentages of only potentially necessary
clauses (opn) and the percentage of only potentially necessary clauses (pn), as
well as the percentage of only usable clauses (ou) and the percentage of usable
clauses (us). Then redundant clauses are considered: the percentage of unusable
clauses (un), the percentage of never necessary clauses (nn) and the percentage
of unnecessary clauses (un). Recall that uu stands for the clauses which can
be satisfied by some autarky; in the final column we give the percentage of the
uu-clauses which can be covered by (iterated) elimination of pure literals alone.6)

These results have been obtained using a tool provided by the authors of [20],
and also a Perl script for computing the lean kernel that iteratively invokes a
SAT solver ([28]) which identifies variables used in a resolution refutation. From
this table some conclusions can be drawn. As one would expect in general to
be the case, as the number of mus’s increases, the relative number of necessary

5) Available from http://www-sr.informatik.uni-tuebingen.de/˜sinz/DC/.
6) Since all instances contain necessary clauses, the maximum (size) maximal satisfi-

able sub-clause-sets are always as large as possible (only one clause missing); the
minimum (size) maximal satisfiable sub-clause-sets here are never much smaller, so
we considered these number negligible.

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/�


clauses decreases. Regarding the number of mus’s we see of lot of variation:
Although half of the problem instances have only a few mus’s, there are also
many problems with many mus’s. In addition, there seems to be no relation
between the number of mus’s and the number of mss’s.

Looking at the levels of necessity, we may observe the following. For all
instances the percentage of clauses in the smallest mus is quite small (in most
cases less than 1%) and the largest mus is usually not much larger than the
smallest one. The number of potentially necessary clauses is typically somewhat
bigger than the size of the largest mus, but for all instances the set of potentially
necessary clauses is still fairly small. The percentage of usable clauses is typically
substantially larger, but only for the UT-family more than half of all clauses are
usable. Looking at the levels of redundancy, we see that in many cases autarky
reduction to a large part boils down to elimination of pure literals. In most cases
most never necessary clauses are already unusable, with the notable exceptions
of the UT- and (to a somewhat lesser degree) the SZ-family, while almost all
unnecessary clauses are already never necessary.

6 Conclusions

This paper proposes a categorisation of clauses in unsatisfiable instances of SAT,
with the objective of developing new insights into the structure of unsatisfiable
formulas. The paper also addresses which sets of clauses are relevant when deal-
ing with unsatisfiable instances of SAT. Finally, the paper evaluates the proposed
categorisation of clauses in well-known unsatisfiable problem instances, obtained
from industrial test cases [27].

We see the following main directions for future research:

– Regarding the industrial test cases considered, we were mainly interested
in them as proof of concept, and likely there are many more interesting
relations hidden in the data (especially when combining them with special
insights into the structure of these formulas).

– In Subsection 3.5 we outlined a general approach for finding causes of un-
satisfiability in a scenario motivated by [27]; it would now be interesting to
see how helpful these considerations are in practice.

– Obviously there are many non-trivial problems regarding the complexity of
the algorithms involved. A main problem here, which according to our knowl-
edge has not been tackled until now, is the complexity of the computation
of

⋃
MU(F ).

– For the computation of the lean kernel in this paper we considered an al-
gorithm exploiting the “duality” between resolution proofs and autarkies.
It would be interesting to compare this approach with a direct approach
(directly searching for autarkies).

– Finally, it would be interesting to perform an analysis as in Table 1 on many
other classes of SAT problems and to see how useful these statistics are for
the categorisation of classes of problem instances.
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