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Abstract. Mutation in DNA is the principal cause for differences among
human beings, and Single Nucleotide Polymorphisms (SNPs) are the
most common mutations. Hence, a fundamental task is to complete a
map of haplotypes (which identify SNPs) in the human population. As-
sociated with this effort, a key computational problem is the inference
of haplotype data from genotype data, since in practice genotype data
rather than haplotype data is usually obtained. Recent work has shown
that a SAT-based approach is by far the most efficient solution to the
problem of haplotype inference by pure parsimony (HIPP), being several
orders of magnitude faster than existing integer linear programming and
branch and bound solutions. This paper proposes a number of key opti-
mizations to the the original SAT-based model. The new version of the
model can be orders of magnitude faster than the original SAT-based
HIPP model, particularly on biological test data.

1 Introduction

Over the last few years, an emphasis in human genomics has been on identify-
ing genetic variations among different people. This allows to systematically test
common genetic variants for their role in disease; such variants explain much of
the genetic diversity in our species. A particular focus has been put on the iden-
tification of Single Nucleotide Polymorphisms (SNPs), point mutations found
with only two possible values in the population, and tracking their inheritance.
However, this process is in practice very difficult due to technological limitations.
Instead, researchers can only identify whether the individual is heterozygotic at
that position, i.e. whether the values inherited from both parents are different.
This process of going from genotypes (which include the ambiguity at heterozy-
gous positions) to haplotypes (where we know from which parent each SNP is
inherited) is called haplotype inference.

A well-known approach to the haplotype inference problem is called Haplo-
type Inference by Pure Parsimony (HIPP). The problem of finding such solu-
tions is APX-hard (and, therefore, NP-hard) [7]. Current methods for solving
the HIPP problem utilize Integer Linear Programming (ILP) [5, 1, 2] and branch
and bound algorithms [10]. Recent work [8] has proposed the utilization of SAT



for the HIPP problem. Preliminary results are significant: on existing well-known
problem instances, the SAT-based HIPP solution (SHIPs) is by far the most effi-
cient approach to the HIPP problem, being orders of magnitude faster than any

other alternative exact approach for the HIPP problem. Nevertheless, additional
testing revealed that the performance of SHIPs can deteriorate for larger prob-
lem instances. This motivated the development of a number of optimizations to
the basic SHIPs model, which are described in this paper. The results of the
improved model are again very significant: the improved model can be orders of

magnitude faster on biological test data than the basic model.

2 Haplotype Inference

A haplotype is the genetic constitution of an individual chromosome. The under-
lying data that forms a haplotype can be the full DNA sequence in the region,
or more commonly the SNPs in that region. Diploid organisms pair homologous
chromosomes, and thus contain two haplotypes, one inherited from each parent.
The genotype describes the conflated data of the two haplotypes. In other words,
an explanation for a genotype is a pair of haplotypes. Conversely, this pair of
haplotypes explains the genotype. If for a given site both copies of the haplotype
have the same value, then the genotype is said to be homozygous at that site;
otherwise is said to be heterozygous.

Given a set G of n genotypes, each of length m, the haplotype inference
problem consists in finding a set H of 2·n haplotypes, such that for each genotype
gi ∈ G there is at least one pair of haplotypes (hj , hk), with hj and hk ∈ H
such that the pair (hj , hk) explains gi. The variable n denotes the number of
individuals in the sample, and m denotes the number of SNP sites. gi denotes a
specific genotype, with 1 ≤ i ≤ n. (Furthermore, gij denotes a specific site j in
genotype gi, with 1 ≤ j ≤ m.) Without loss of generality, we may assume that
the values of a SNP are always 0 or 1. Value 0 represents the wild type and value
1 represents the mutant. A haplotype is then a string over the alphabet {0,1}.
Moreover, genotypes may be represented by extending the alphabet used for
representing haplotypes to {0,1,2}. Homozygous sites are represented by values
0 or 1, depending on whether both haplotypes have value 0 or 1 at that site,
respectively. Heterozygous sites are represented by value 2.

One of the approaches to the haplotype inference problem is called Haplotype
Inference by Pure Parsimony (HIPP). A solution to this problem minimizes the
total number of distinct haplotypes used. Experimental results provide support
for this method: the number of haplotypes in a large population is typically very
small, although genotypes exhibit a great diversity.

3 SAT-Based Haplotype Inference

This section summarizes the model proposed in [8], where a more detailed de-
scription of the model (and associated optimizations) can be found. The SAT-
based formulation models whether there exists a set H of haplotypes, with



r = |H| haplotypes, such that each genotype gi ∈ G is explained by a pair
of haplotypes in H. The SAT-based algorithm considers increasing sizes for H,
from a lower bound lb to an upper bound ub. Trivial lower and upper bounds
are, respectively, 1 and 2 · n. The algorithm terminates for a size of H for which
there exists r = |H| haplotypes such that every genotype in G is explained by
a pair of haplotypes in H. In what follows we assume n genotypes each with
m sites. The same indexes will be used throughout: i ranges over the genotypes
and j over the sites, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In addition r candidate
haplotypes are considered, each with m sites. An additional index k is associ-
ated with haplotypes, 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1} denotes the jth site of
haplotype k. Moreover, a haplotype hk, is viewed as a m-bit word, hk 1 . . . hk m.
A valuation v : {hk 1, . . . , hk m} → {0, 1} to the bits of hk is denoted by hv

k.
Observe that valuations can be extended to other sets of variables.

For a given value of r, the model considers r haplotypes and seeks to associate
two haplotypes (which can possibly represent the same haplotype) with each
genotype gi, 1 ≤ i ≤ n. As a result, for each genotype gi, the model uses selector

variables for selecting which haplotypes are used for explaining gi. Since the
genotype is to be explained by two haplotypes, the model uses two sets, a and
b, of r selector variables, respectively sa

ki and sb
ki, with k = 1, . . . , r. Hence,

genotype gi is explained by haplotypes hk1
and hk2

if sa
k1i = 1 and sb

k2i = 1.

Clearly, gi is also explained by the same haplotypes if sa
k2i = 1 and sb

k1i = 1.

If a site gij of a genotype gi is either 0 or 1, then this is the value required
at this site and so this information is used by the model. If a site gij is 0, then
the model requires, for k = 1, . . . , r, (¬hkj ∨ ¬sa

ki) ∧ (¬hkj ∨ ¬sb
ki). If a site

gij is 1, then the model requires, for k = 1, . . . , r, (hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki).
Otherwise, one requires that the haplotypes explaining the genotype gi have
opposing values at site i. This is done by creating two variables, ga

ij ∈ {0, 1}

and gb
ij ∈ {0, 1}, such that ga

ij 6= gb
ij . In CNF, the model requires two clauses,

(ga
ij ∨ gb

ij) ∧ (¬ga
ij ∨ ¬gb

ij). In addition, the model requires, for k = 1, . . . , r,

(hkj ∨¬ga
ij ∨¬sa

ki)∧ (¬hkj ∨ ga
ij ∨¬sa

ki)∧ (hkj ∨¬gb
ij ∨¬sb

ki)∧ (¬hkj ∨ gb
ij ∨¬sb

ki).
Clearly, for each i, and for a or b, it is necessary that exactly one haplotype
is used, and so exactly one selector variable be assigned value 1. This can be
captured with cardinality constraints, (

∑r

k=1
sa

ki = 1) ∧
(
∑r

k=1
sb

ki = 1
)

. Since
the proposed model is purely SAT-based, a simple alternative solution is used,
which consists of the CNF representation of a simplified adder circuit [8].

The model described above is not effective in practice. Hence a number of
improvements have been added to the basic model. One technique, common to
other approaches to the HIPP problem, is the utilization of structural simplifica-
tions techniques, for reducing the number of genotypes and sites [2, 8]. Another
technique is the utilization of lower bound estimates, which reduce the number
of iterations of the algorithm, but also effectively prune the search space. Fi-
nally, one additional key technique for pruning the search space is motivated by
observing the existence of symmetry in the problem formulation. Consider two
haplotypes hk1

and hk2
, and the selector variables sa

k1i, sa
k2i, sb

k1i and sb
k2i. Fur-

thermore, consider Boolean valuations vx and vy to the sites of haplotypes hk1



and hk2
. Then, hvx

k1
and h

vy

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 1001, corresponds to h

vy

k1
and

hvx

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 0110, and one of the assignments can be eliminated.

To remedy this, one possibility is to enforce an ordering of the Boolean valua-
tions to the haplotypes 3. Hence, for any valuation v to the problem variables
we require hv

1 < hv
2 < . . . < hv

r (see [8] for further details).

4 Improvements to SAT-Based Haplotype Inference

Motivated by an effort to apply the SHIPs model to biological test data, we
were able to identify a number of additional improvements to the basic model.
For difficult problem instances, the run time is very sensitive to the number of g

variables used. The basic model creates two variables for each heterozygous site.
One simple optimization is to replace each pair of g variables associated with a
heterozygous site, ga

ij and gb
ij , by a single variable tij . Consequently, the new set

of constraints becomes, (hkj ∨¬tij ∨¬sa
ki)∧(¬hkj ∨tij ∨¬sa

ki)∧(hkj ∨tij ∨¬sb
ki)∧

(¬hkj ∨¬tij ∨¬sb
ki). Hence, if selector variable sa

ki is activated (i.e. assumes value
1), then hkj is equal to tij . In contrast, if selector variable sb

ki is activated, then
hkj is the complement of tij . Observe that, since the genotype has at least one
heterozygous site, then it must be explained by two different haplotypes, and so
sa

ki and sb
ki cannot be simultaneously activated.

The basic model utilizes lower bounds, which are obtained by identifying in-
compatibility relations among genotypes. These incompatibility relations find
other applications. Consider two incompatible genotypes, gi1 and gi2 , and a
candidate haplotype hk. Hence, if either sa

ki1
or sb

ki1
is activated, and so hk

is used for explaining genotype gi1 , then haplotype hk cannot be used for ex-
plaining gi2 ; hence both sa

ki2
and sb

ki2
must not be activated. The implementa-

tion of this condition is achieved by adding the following clauses for each pair
of incompatible genotypes gi1 and gi2 and for each candidate haplotype hk,
(¬sa

ki1
∨ ¬sa

ki2
) ∧ (¬sa

ki1
∨ ¬sb

ki2
) ∧ (¬sb

ki1
∨ ¬sa

ki2
) ∧ (¬sb

ki1
∨ ¬sb

ki2
).

One of the key techniques proposed in the basic model is the utilization of
the sorting condition over the haplotypes, as an effective symmetry breaking
technique. Additional symmetry breaking conditions are possible. Observe that
the model consists of selecting a candidate haplotype for the a representative and
another haplotype for the b representative, such that each genotype is explained
by the a and b representatives. Given a set of r candidate haplotypes, let hk1

and
hk2

, with k1, k2 ≤ r, be two haplotypes which explain a genotype gi. This means
that gi can be explained by the assignments sa

k1is
a
k2is

b
k1is

b
k2i = 1001, but also by

the assignments sa
k1is

a
k2is

b
k1is

b
k2i = 0110. This symmetry can be eliminated by

requiring that only one arrangement of the s variables can be used to explain
each genotype gi. One solution is to require that the haplotype selected by the
sa

ki variables always has an index smaller than the haplotype selected by the sb
ki

variables. This requirement is captured by the conditions
(

sa
k1i →

∧k1−1

k2=1
¬sb

k2i

)

3 See for example [4] for a survey of work on the utilization of lexicographic orderings
for symmetry breaking.
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Fig. 1. Comparison of the basic and improved SHIPs models (run times)

and
(

sb
k2i →

∧r

k1=k2+1
¬sa

k1i

)

. Clearly, each condition above can be represent by
a single clause. Moreover, observe that for genotypes with heterozygous sites,
the upper limit of the first constraint can be set to k1 − 1 and the lower limit of
the second condition can be set to k2 + 1.

5 Experimental Results

The models described in the previous section, referred to as SHIPs (Sat-based
Haplotype Inference by Pure Parsimony), have been implemented as a Perl
script, which iteratively generates CNF formulas to be given to a SAT solver.
Currently, MiniSAT [3] is used.

With the purpose of comparing the basic and the improved versions of SHIPs,
two sets of problem instances are considered. The first set of instances were
generated using Hudson’s program ms [6] (denoted std instances). The second
set of instances are the instances currently available from biological test data
(denoted bio test data) (e.g. from [9]).

The results are shown in Figure 1. Each plot compares the CPU time required
by both the basic and the improved SHIPs models for solving each problem
instance. The limit CPU time was set to 10000s using a 1.9 GHz AMD Athlon XP
with 1GB of RAM running RedHat Linux. For the std instances the results are
clear. The improved model is consistently faster than the basic model, especially
for the most difficult problem instances. For problem instances requiring more
than 10 CPU seconds, and with a single exception, the improved model is always
faster than the basic model. For most of these instances, and by noting that the
plot uses a log scale, we can conclude that the speedups range from a factor of 2
to a factor of 10. For the bio test data instances the performance differences
become even more clear. The improved model significantly outperforms the basic



model. Observe that the speedups introduced by the improved model can exceed
4 orders of magnitude.

6 Conclusions and Future Work

This paper provides further evidence that haplotype inference is a new very
promising application area for SAT. The results in this paper and in [8] provide
unquestionable evidence that the utilization of SAT yields the most efficient ap-
proach to the problem of haplotype inference by pure parsimony. Indeed, the
SAT-based approach is the only approach currently capable of solving a large
number of practical instances. Moreover, the optimizations proposed in this pa-
per are shown to be essential for solving challenging problem instances from
biological test data. Despite the promising results, several challenges remain.
Additional biological test data may yield new challenging problem instances,
which may motivate additional optimizations to the SAT-based approach.
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