
A SAT Encoding for the Social Golfer Problem

Inês Lynce
IST/INESC-ID, Technical University of Lisbon

Lisbon, Portugal
ines@sat.inesc-id.pt

Abstract

We introduce a SAT encoding for the social
golfer problem. Since 1998, the social golfer
problem has become a famous combinatorial
problem. It is problem number 10 in CSPLib
(http://www.csplib.org/). For a social golfer
problem w-p-g, the goal is to schedule a golf
tournament during w weeks. Each week, g

groups of p players each are formed. No golfer
plays in the same group as any other golfer more
than once.

1 The Problem

The social golfer problem is derived from a ques-
tion posted to sci.op-research in May 1998:

The coordinator of a local golf
club has come to you with the fol-
lowing problem. In her club, there
are 32 social golfers, each of whom
play golf once a week, and always in
groups of 4. She would like you to
come up with a schedule of play for
these golfers, to last as many weeks
as possible, such that no golfer plays
in the same group as any other golfer
on more than one occasion.

In other words, this problem can be de-
scribed more explicitly by enumerating four con-
straints which must be satisfied:

1. The golf club has 32 members.

2. Each member plays golf once a week.

3. Golfers always play in groups of 4.

4. No golfer plays in the same group as any
other golfer twice.

A solution is said to be optimal when max-

imum socialisation is achieved, i.e. when one

week group 1 group 2 group 3
1 1 2 3 4 5 6 7 8 9
2 1 4 7 2 5 8 3 6 9
3 1 5 9 2 6 7 3 4 8
4 1 6 8 2 4 9 3 5 7

Figure 1: A solution for problem 4-3-3.

golfer plays with as many other golfers as possi-
ble. Clearly, since a golfer plays with three new
golfers each week, the schedule cannot exceed
10 weeks. This follows from the fact that each
golfer plays with three other golfers each week.
Since there is a total of 31 other golfers, this
means that a golfer runs out of opponents after
31/3 weeks.

For some years, it was not known if a 10 week
(and therefore optimal) solution for 32 golfers
existed. In 2004, Aguado found a solution using
design-theoretic techniques [1]. No constraint
programming technique has yet solved this in-
stance, so it remains a valuable benchmark. The
best known solution from constraint program-
ming is from Stefano Novello, who found out a
9-week solution by using ECLiPSe. Hence, the
current challenge is to find a 10-week solution.

Even though the social golfer problem was
described for 32 golfers playing in groups of 4,
it can be easily generalized. An instance to the
problem is characterized by a triple w-p-g, where
w is the number of weeks, p is the number of
players per group and g is the number of groups.
The original question therefore is to find a so-
lution to the w-4-8 problem, with w being the
maximum, i.e. to find a solution to 10-4-8 (or
prove that none exists). For example, Figure 1
gives a solution for the social golfer problem 4-
3-3, i.e. for scheduling 9 golfers playing in 3
groups of 3 golfers each for 4 weeks.

The social golfer problem is related with
other well-known combinatorial problems. In-
deed, this problem is a generalisation of the

1



SAT Competition 2005 - benchmark description

problem of constructing a round-robin tourna-
ment schedule, the main difference being that in
the social golfer problem the number of players
in a group may be greater than two. Also, the
social golfer problem of finding a 7 week sched-
ule for 5 groups of 3 players (5-3-7) is the same
as Kirkman’s schoolgirl problem.

2 A SAT Encoding

To encode the social golfer problem as a SAT
problem we must define a set of variables and
a set of constraints (represented by clauses) on
the variables.

The set of constraints must guarantee that
each golfer plays golf once a week, golfers always
play in groups of a given size and no golfer plays
in the same group as any other golfer twice.

We have defined SAT variables based on the
golfers. Apparently, for a social golfer problem
w-p-g it should be enough to have w× (p× g)×
g variables. The value of each variable would
allow us to conclude whether, in a given week, a
certain golfer is scheduled to play in a particular
group.

However, we have chosen another model.
Even though this model has more variables,
these variables are quite useful for defining the
problem constraints. Instead of w × (p × g) × g

variables, this new model has w × (p × g) ×

(p × g) variables. When compared with the
other model, the difference is that we introduced
an additional order relation for golfers within
groups. This means that the value of each vari-
able indicates whether golfer i is scheduled to
play in group k of week l as the jth player, with
1 ≤ i ≤ x, 1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w.
Although the order of players is irrelevant within
groups (as well as the order of groups within
weeks and the order of weeks), this model re-
quires most constraints to be at-least-one and
at-most-one clauses.

The next step consists in adding clauses to
specify that:

• Each golfer plays exactly once per week:

– At least once per wee.
– At most once per week.

• Each group in each week has exactly p

players:

– At least one golfer must play as the
jth golfer, with 1 ≤ j ≤ p.

– At most one golfer can play as the jth

golfer, with 1 ≤ j ≤ p.

Let us now consider the social golfer problem
w-p-g, where the number of golfers is given by
x = p×g. Consider Golferijkl to be a variable
equivalent to having golfer i playing as the jth

player of group k during week l, with 1 ≤ i ≤ x,
1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w.

Each at-least-one clauses referring to golfers
has size x = p × g and is obtained as simply as
follows.

x
∧

i=1

w
∧

l=1

p
∨

j=1

g
∨

k=1

Golferijkl

The at-most-one clauses referring to golfers
are encoded with two sets of binary clauses. The
first set of clauses guarantees that each golfer
plays at most once in the same group.

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

p
∧

m=j+1

¬Golferijkl∨¬Golferimkl

The second set of clauses guarantees that
each golfer plays at most once per week.

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=j+1

¬Golferijkl∨¬Golferinml

Let us now consider the clauses referring to
groups of golfers. Each at-least-one clause has
size x and is obtained as follows.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∨

i=1

Golferijkl

Finally, the at-most-clauses for groups of
golfers are encoded by a set of binary clauses.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬Golferijkl∨¬Golferimkl

With the set of variables and clauses de-
scribed above we have encoded all the con-
straints of the problem, except the one that
mentions that “no golfer plays in the same group
as any other golfer twice”. To guarantee this
condition, we introduce a set of auxiliary vari-
ables and a ladder matrix.

The set of auxiliary variables allows us to
know exactly which golfers are scheduled to play
in each match. Hence, we must have x × g × w

additional variables. Clearly, the value of these

2



SAT Competition 2005 - benchmark description

new variables depends on the value of the vari-
ables Golfer described above. Consider these
new variables to be a set of variables denoted
as Golfer’ikl, meaning that golfer i is sched-
uled to play in group k during week l, with
1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w. It
is easy to establish an equivalence relation be-
tween each variable Golfer’ikl and the corre-
sponding Golfer variables. (Each equivalence
may be readily converted into a set of clauses.)

Golfer’ikl ↔

p
∨

j=1

Golferijkl

These new variables will now be used by the
variables in the ladder matrix in such a way that
no golfer plays in the same group as any other
golfer more than once.

The ladder matrix [2, 4, 5] consists of a set of
(g ×w)×

(

x

2

)

ladder variables (and also a set of
ladder clauses). Intuitively, one would say that
the value of each variable denotes whether two
golfers are scheduled to play together in a given
group of a given week. But we can do better.
We can guarantee that every two golfers play
together at most once.

Consider the ladder variables to be denoted
as Ladderyz, with 1 ≤ y ≤ g × w and 1 ≤ z ≤
(

x

2

)

. A complete assignment of the ladder vari-
ables is said to be valid if and only if every row
is a sequence of zero or more true assignments
followed by false assignments.

∀y¬∃zLadderyz = False∧Ladderyz+1 = True

The behavior of the ladder matrix can be
used to guarantee that no two golfers play more
than once in the same group. Actually, having
an adjacent pair of variables with values True

and False identifies precisely in which group of
which week two golfers played together.

Whenever a ladder variable is satisfied, there
is a set of adjacent variables that must be satis-
fied. This can be achieved by unit propagation
adding the following set of clauses.

g×w
∧

y=1

(x

2)−1
∧

z=1

¬Ladderyz+1 ∨ Ladderyz

Finally, the variables in the ladder matrix
must be related with the auxiliary variables de-
scribed above (denoted as Golfer’). If one of
these variables is satisfied, meaning that one

golfer is scheduled to play in a specific group,
then the corresponding ladder variables are sat-
isfied. Obviously, the ladder variables to be sat-
isfied depend on the golfers that are also sched-
uled to play in the same group.

Appendix: Symmetry Breaking

This social golfer problem is highly symmetric,
exhibiting the following symmetries:

• Golfers are interchangeable. That is, the
names of the 32 golfers are insignificant.

• Golfers within a group are interchange-
able. Order has no significance for groups
of golfers.

• Groups within a week are interchangeable.
Again, order has no significance when con-
sidering groups within a week.

• Weeks are interchangeable. There are no
order constraints with respect to weeks.

For example, considering again the solution
given in Figure 1, one may assume that symme-
tries have been eliminated: this explains why
golfers are ordered within groups, groups are
ordered within weeks with respect to the first
player and weeks are ordered with respect to
the second player of the first group.

After establishing the model described
above, we have considered adding clauses to our
SAT encoding for breaking symmetries. How-
ever, experimental results given in [3] indicate
that symmetry breaking does not speed-up SAT
solvers in our encoding. Hence, we decided not
to include symmetry breaking clauses in the
benchmarks we submitted to the competition.

References

[1] Alejandro Aguado. A 10 days solution to the
social golfer problem, 2004. Manuscript.

[2] Carlos Ansótegui and Felip Manyá. Mapping
problems with finite-domain variables into prob-
lems with boolean variables. In SAT’04, 2004.

[3] Ian P. Gent and Inês Lynce. SAT encodings for
combinatorial problems, 2005. Submitted.

[4] Ian P. Gent and Peter Nightingale. A new encod-
ing of alldifferent into sat. In 3rd International

Workshop on Modelling and Reformulating Con-

straint Satisfaction Problems, CP’04, 2004.

[5] Ian P. Gent and Patrick Prosser. Sat encodings
of the stable marriage problem with ties and in-
complete lists. In SAT’02, 2002.

3


