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SAT: A Simple Example

¢ Boolean Satisfiability (SAT) in a short sentence:

— SAT is the problem of deciding (requires a yes/no answer) if
there is an assignment to the variables of a Boolean formula
such that the formula is satisfied

e Consider the formula (a V b) A (—a V —¢)

— The assignment b = True and ¢ = False satisfies the formula!



SAT: A Practical Example

e Consider the following constraints:
— John can only meet either on Monday, Wednesday or Thursday
— Catherine cannot meet on Wednesday
— Anne cannot meet on Friday
— Peter cannot meet neither on Tuesday nor on Thursday
QUESTION: When can the meeting take place?

e Encode then into the following Boolean formula:
(Mon\V Wed Vv Thu) A (mWed) A (—=Fri) A (- Tue A = Thu)

— The meeting must take place on Monday

[m] = =
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Motivation - Why SAT?

 Boolean Satisfiability (SAT) has seen significant
improvements in recent years

At the beginning is was simply the first known NP-complete
problem [Stephen Cook, 1971]

After that mostly theoretical contributions followed

In the 90's practical algorithms were developed and made
available

Currently, SAT founds many practical applications

SAT extensions found even more applications



Motivation - Some lessons from SAT |

e Time is everything
— Good ideas are not enough, you have to be fast!
— One thing is the algorithm, another thing is the implementation
— Make your source code available
> Otherwise people will have to wait for years before realising
what you have done
> At least provide an executable!



Motivation - Some lessons from SAT I

e Competitions are essential
— To check the state-of-the-art of SAT solvers
— To keep the community alive (for almost a decade now)
— To get students involved
e Part of the credibility of a community comes from the
correctness and robustness of the tools made available



Motivation - Some lessons from SAT IlI

e There is no perfect solver!
— Do not expect your solver to beat all the other solvers on all
problem instances
e What makes a good solver?

— Correctness and robustness for sure...

— Being most often the best for its category: industrial,
handmade or random

— Being able to solve instances from different problems



www.satcompetition.org

e Get all the info from the SAT competition web page
— Organizers, judges, benchmarks, executables, source code
— Winners
» Industrial, Handmade and Random benchmarks
» SAT+UNSAT, SAT and UNSAT categories
> Gold, Silver and Bronze medals

The international SAT Competitions web page

Current competition
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Boolean Formulas

e Boolean formula ¢ is defined over a set of propositional
variables xi,..., x,, using the standard propositional
connectives =1, A, V, —, <>, and parenthesis

— The domain of propositional variables is {0,1}
— Example: o(x1,...,x3) = ((mx1 A x2) V x3) A (—x2 V x3)

e A formula ¢ in conjunctive normal form (CNF) is a
conjunction of disjunctions (clauses) of literals, where a literal
is a variable or its complement

— Example: o(x1,...,x3) = (=x1 Vx3) A (x2 V x3) A (mx2 V x3)

e Can encode any Boolean formula into CNF (more later)



Boolean Satisfiability (SAT)

e The Boolean satisfiability (SAT) problem:

— Find an assignment to the variables x, ..., x, such that
©(x1,...,%,) = 1, or prove that no such assignment exists
e SAT is an NP-complete decision problem [Cook'71]

— SAT was the first problem to be shown NP-complete

— There are no known polynomial time algorithms for SAT

— 39-year old conjecture:
Any algorithm that solves SAT is exponential in the number of
variables, in the worst-case



Definitions

e Propositional variables can be assigned value 0 or 1
— In some contexts variables may be unassigned

A clause is satisfied if at least one of its literals is assigned
value 1

(Xl V —xo V ﬁX3)

A clause is unsatisfied if all of its literals are assigned value 0
(Xl V —=xo V ﬁXg)

A clause is unit if it contains one single unassigned literal and
all other literals are assigned value 0

(Xl V —xo V ﬁX3)

A formula is satisfied if all of its clauses are satisfied

A formula is unsatisfied if at least one of its clauses is
unsatisfied
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Algorithms for SAT

e Incomplete algorithms (i.e. can only prove (un)satisfiability):
— Local search / hill-climbing
— Genetic algorithms

Simulated annealing

o Complete algorithms (i.e. can prove both satisfiability and
unsatisfiability):
Proof system(s)
> Natural deduction
» Resolution
» Stalmarck’s method

> Recursive learning
>

Binary Decision Diagrams (BDDs)
Backtrack search / DPLL

» Conflict-Driven Clause Learning (CDCL)
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Organization of Local Search

e Local search is incomplete; usually it cannot prove
unsatisfiability

— Very effective in specific contexts

e Example:

(x1V—x2V-x3)A(—x1 V-x3 Vxg) A(—x1 V—xe Voxa)



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(x1V—x2V-x3)A(—x1 V-x3 Vxg) A(—x1 V—xe Voxa)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(a Vo V-xs) A(—xa Vs Vixg) A(—x V—xe Voxg)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(a Vo V-xs) A(—xa Vs Vixg) A(—x V—xe Voxg)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:
— If not all clauses satisfied, flip variable (e.g. x4)



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(a Vo Voxs) A(—xa Vs Vi) A(—x Voxe Voxg)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:
— If not all clauses satisfied, flip variable (e.g. x4)



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(a Vo Voxs) A(—xa Vs Vi) A(—x Voxe Voxg)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:

— If not all clauses satisfied, flip variable (e.g. x4)
— Done if all clauses satisfied



Organization of Local Search

Local search is incomplete; usually it cannot prove
unsatisfiability
— Very effective in specific contexts

Example:

(a Vo Voxs) A(—xa Vs Vi) A(—x Voxe Voxg)

Start with (possibly random) assignment:
X4:O,X1:X2:X3:]_

And repeat a number of times:

— If not all clauses satisfied, flip variable (e.g. x4)
— Done if all clauses satisfied

Repeat (random) selection of assignment a number of times
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Pure Literals

e A literal is pure if only occurs as a positive literal or as a
negative literal in a CNF formula
— Example:
e=(x1Vx)A(x3V-x)A(xsV-x5)A (X5 V —xq)
— x; and x3 and pure literals

o Pure literal rule:
Clauses containing pure literals can be removed from the
formula (i.e. just assign pure literals to the values that satisfy
the clauses)
— For the example above, the resulting formula becomes:
©=(xaV-x5)A (x5 Vxg)

o A reference technique until the mid 90s; nowadays seldom
used



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(2 V-—xV-x3)A(mx1 Vs Vxg) A(—x1 V—xo Voxa)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(1 V=oxo Vaxs) A (—xa Voxs Voxa) A (5xa Voxe Voxa)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(a1 VoxaVaxs) A(—xe Voxs Voxa) A (5xa Voxe Voxa)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(a1 VoxaVaxs) A(—xe Voxs Voxa) A (5xa Voxe Voxa)

(2 VxV-x3)A(mx1 Voxa V) A(—x1 Voxe Vooixa)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(a1 VoxaVaxs) A(—xe Voxs Voxa) A (5xa Voxe Voxa)

(a VxVox3)A(x1 Voxg Vxg) A(—x Voxe Vooixa)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —xp V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(a1 VoxaVaxs) A(—xe Voxs Voxa) A (5xa Voxe Voxa)

(a VxVox3) A(x1 Voxg Voxa) A(—x Voxe Vooixg)



Unit Propagation

e Unit clause rule:
Given a unit clause, its only unassigned literal must be
assigned value 1 for the clause to be satisfied

— Example: for unit clause (x; V —x2 V —x3), x3 must be assigned
value 0

e Unit propagation
Iterated application of the unit clause rule

(a VxaVaxs) A(x Vg Vo) A(—x V—xo Voxa)

(a V=xoVox3) A(—x Voxa Voxa) A(—xg V—xe Vo—ixg)

e Unit propagation can satisfy clauses but can also unsatisfy
clauses. Unsatisfied clauses create conflicts.
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Resolution

e Resolution rule:
— If a formula ¢ contains clauses (x V «) and (—x V 3), then one
can infer (a V )

(xVa)A(-xVp)F (aVp)

e Resolution is a sound and complete rule



Resolution

e Resolution forms the basis of a complete algorithm for SAT

— lteratively apply the following steps: [Davis&Putnam'60]
> Select variable x
> Apply resolution rule between every pair of clauses of the form

(x Va) and (—x V B)

> Remove all clauses containing either x or —x
> Apply the pure literal rule and unit propagation

— Terminate when either the empty clause or the empty formula

(equivalently, a formula containing only pure literals) is derived



Resolution — An Example

aV-xV-x3)A(—x1V-xV-x3)A (0 Vxs)A(sVx)A sV -xg) F



Resolution — An Example

aV-xV-x3)A(—x1V-xV-x3)A (0 Vxs)A(sVx)A sV -xg) F

(_\X2 vV _'X3) AN (X2 \ X3) A (X3 V X4) A (X3 \Y _‘X4) H



Resolution — An Example

aV-xV-x3)A(—x1V-xV-x3)A (0 Vxs)A(sVx)A sV -xg) F
(_\X2 vV _'X3) AN (X2 \ X3) A (X3 V X4) A (X3 \Y _‘X4) H
}_

(X3 V ﬂX3) A (X3 V X4) N (X3 V _\X4)



Resolution — An Example

(aV=xV-x3)A(—x1V-xaV-x3) A (o Vxs)A(xsVxg)A(xsV —xq)
(_\X2 vV _|X3) AN (X2 \ X3) A (X3 V X4) A (X3 \Y _‘X4)
(X3 V ﬂX3) A (X3 V X4) N (X3 V _\X4)

(3 V xa) A (x3V —xq)



Resolution — An Example

x1 Vo Voxs) A (mx Voo Voxs) A (e Vxs) A (xg Vxg) A(xs V—ixg)

X2 vV _|X3) AN (X2 \ X3) A (X3 V X4) A (X3 \Y _‘X4)

(
(
(x3V=x3) A (x3V xa) A (x3V —xq)
(3 V xa) A (x3V —xq)

(

X3)

e Formula is SAT
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Stalmarck’'s Method

e Recursive application of the branch-merge rule to each
variable with the goal of identifying common assignments

p=(aVvb)(—-aVc)(-bVd)(-cVd)

(2=0)—(b=1)—(d=1)
UP(a=0)={a=0,b=1,d=1}

(a=1)—=(c=1)—(d=1)
UP(a=1)={a=1c=1,d=1}

UP(a=0)NUP(a=1)={d =1}

— Any assignment to variable a implies d = 1.
Hence, d = 1 is a necessary assignment!

e Recursion can be of arbitrary depth
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Recursive Learning

o Recursive evaluation of clause satisfiability requirements for
identifying common assignments

= (aVvb)(-aVc)(—bVd)(-cVd)

(a=1)—(c=1)—(d=1)
UP(a=1)={a=1,c=1,d=1}

(b=1)—(d=1)
UP(b=1)={b=1,d =1}

— Every way of satisfying (a vV b) implies d = 1.
Hence, d = 1 is a necessary assignment!

e Recursion can be of arbitrary depth
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Historical Perspective |

e In 1960, M. Davis and H. Putnam proposed the DP
algorithm:

— Resolution used to eliminate 1 variable at each step
— Applied the pure literal rule and unit propagation

e Original algorithm was inefficient



Historical Perspective |l

e In 1962, M. Davis, G. Logemann and D. Loveland proposed
an alternative algorithm:

— Instead of eliminating variables, the algorithm would split on a
given variable at each step
— Also applied the pure literal rule and unit propagation
e The 1962 algorithm is actually an implementation of
backtrack search

e Over the years the 1962 algorithm became known as the
DPLL (sometimes DLL) algorithm



Basic Algorithm for SAT — DPLL

e Standard backtrack search
e At each step:
— [DECIDE] Select decision assignment
[DEDUCE] Apply unit propagation and (optionally) the pure

literal rule
— [DIAGNOSIS] If conflict identified, then backtrack

» |If cannot backtrack further, return UNSAT
> Otherwise, proceed with unit propagation
If formula satisfied, return SAT
Otherwise, proceed with another decision



An Example of DPLL

(av-bVvd)A(aV-bVe)A
(mbV dV —e)A
(avbVvecvd)A(avbVveV-d)A
(avbV-acVe)A(aVbV-cV —e)

(’0:



An Example of DPLL

(av-abVvd)A(aV-bVe)A
(mbV dV—e)A
(avbVvecvd)A(avbVvecV-d)A
(avbV-acVe)A(aVbV-cV —e)

©
I



An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(mbV —dV—e)A
(avbVvevd)A(avbVeV-d)A
(avbV-acVe)A(aVbV-cV —e)

conflict
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An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
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An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(—bV-dV—e)A @
(avbVevd)A(aVbVeV-d)A -
(avbV-acVe)A(aVbV-cV—e)
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An Example of DPLL

¢ = (av-bVd)A(aV-bVe)A
(mbV dV—e)A
(avbVeVvd)A(avbVecV-d)A
(aVbV-acVe)A(aVbV-cV —e)

conflict



An Example of DPLL

¢ = (av-bVd)A(aV—-bVe)A
(~bV —d V —e) A /
(aVbVeVd)A(aVbVeV-d)A -

(aVbV-cVe)A(aVbV-cV—e) @

/ .
conflict / solution
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CDCL SAT Solvers

e Introduced in the 90's
[Marques-Silva&Sakallah'96][Bayardo&Schrag'97]

e Inspired on DPLL
— Must be able to prove both satisfiability and unsatisfiability

e New clauses are learnt from conflicts
e Structure of conflicts exploited (UIPs)

e Backtracking can be non-chronological
o Efficient data structures [Moskewicz&al'01]
— Compact and reduced maintenance overhead

e Backtrack search is periodically restarted [Gomes&:al'98]

e Can solve instances with hundreds of thousand variables and
tens of million clauses



CDCL SAT Solvers

e Introduced in the 90's
[Marques-Silva&Sakallah'96][Bayardo&Schrag'97]
e Inspired on DPLL
— Must be able to prove both satisfiability and unsatisfiability

e New clauses are learnt from conflicts
e Structure of conflicts exploited (UIPs)

e Backtracking can be non-chronological
o Efficient data structures
— Compact and reduced maintenance overhead

e Backtrack search is periodically restarted

e Can solve instances with hundreds of thousand variables and
tens of million clauses
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Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

po=(aVb)A(=bV c Vd)A(-bVe)A(-dV-eV f)...



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

po=(aVb)A(=bV c Vd)A(-bVe)A(-dV—-eV f)...

— Assume decisions c =0 and f =0



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

po=(a Vb)A(=bV c Vd)A(-bVe)A(-dV-eV f)...

— Assume decisions c =0 and f =0
— Assign a = 0 and imply assignments



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

po=(a Vb)A(=bV c Vd)A(-bVe)A(-dV-eV )...

— Assume decisions c =0 and f =0
— Assign a = 0 and imply assignments



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

(p:(a \/b)/\(—|b\/ c \/d)/\(—|b\/e)/\(—\d\/—\e\/ f)
— Assume decisions c =0 and f =0

— Assign a = 0 and imply assignments
— A conflict is reached: (—d V —e V ) is unsatisfied



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o=(aVb)A(=bV ¢ Vd)A(=bVe)A(~dV—-eV f)...

Assume decisions ¢ =0 and f =0

Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V ) is unsatisfied
(a=0)A(c=0)A(F=0)= (¢=0)



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o=(aVb)A(=bV ¢ Vd)A(=bVe)A(~dV—-eV f)...

Assume decisions ¢ =0 and f =0

Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V ) is unsatisfied
(a=0)A(c=0)A(f=0)=(,r=0)

—(p=1)=(a=1)Vv(c=1V(F=1)



Clause Learning

e During backtrack search, for each conflict learn new clause,
which explains and prevents repetition of the same conflict

o=(aVb)A(=bV ¢ Vd)A(=bVe)A(~dV—-eV f)...

Assume decisions ¢ =0 and f =0

Assign a = 0 and imply assignments

— A conflict is reached: (—d V —e V ) is unsatisfied
(a=0)A(c=0)A(f=0)=(,r=0)

—(p=1)=(a=1)Vv(c=1V(F=1)

— Learn new clause (aV ¢V f)



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(-bV c VA)A(-bVe)A(-dV eV f)A
(avV eV F)AN(HaVvg)A(-gVb)A(=hV )N (—iVk)



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(-bV c VA)A(=bVe)A(-dV eV f)A
(avVcV F)AN(HaVvVg)A(-gVb)A(—hVj)N(—iVk)

— Assume decisions c =0, f =0, h=0and i =0



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
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implies a=1



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV c VA)A(=bVe)A(-dV eV f)A
(aV eV Ii)YNEaVvVg)A(-gVb)A(=hV )N (—iVk)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV c VA)A(-bVe)A(-dV eV f)A
(aV eV IF)YANEaVg)A(—gVDb)A(=hV )N (—iV k)

— Assume decisions c =0, f =0, h=0and i =0
— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV c VA)A(=bVe)A(-dV eV f)A
(aV eV IF)YANEaVg)A(—gVDb)A(=hV )N (—iV k)

— Assume decisions c =0, f =0, h=0and i =0

— Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1

— A conflict is again reached: (—d V —eV f) is unsatisfied



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV ¢ VA)A(=bVe)A(-dV eV f)A
(aV eV F)ANHaVvg)A(—gVb)A(—hV )N (—iV k)

Assume decisions c =0, f =0, h=0and i =0

Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1

— A conflict is again reached: (—d V —eV f) is unsatisfied
(c=0)A(f=0)=(p=0)



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV ¢ VA)A(=bVe)A(-dV eV f)A
(aV eV F)ANHaVvg)A(—gVb)A(—hV )N (—iV k)

Assume decisions c =0, f =0, h=0and i =0

Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1

— A conflict is again reached: (—d V —eV f) is unsatisfied
(c=0)A(f=0)=(p=0)
~(p=1)=(c=1)V(F=1)



Non-Chronological Backtracking

e During backtrack search, for each conflict backtrack to one of
the causes of the conflict

¢ = (aVb)A(=bV ¢ VA)A(=bVe)A(-dV eV f)A
(aV eV F)ANHaVvg)A(—gVb)A(—hV )N (—iV k)

Assume decisions c =0, f =0, h=0and i =0

Assignment a = 0 caused conflict = learnt clause (aV c V f)
implies a=1

— A conflict is again reached: (—d V —eV f) is unsatisfied
(c=0)A(f=0)=(p=0)
~(p=1)=(c=1)V(F=1)

— Learn new clause (¢ V f)



Non-Chronological Backtracking
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Non-Chronological Backtracking

Learnt clause: (c V f)

Need to backtrack, given
new clause

Backtrack to most recent
decision: f =0

Clause learning and
non-chronological
backtracking are hallmarks
of modern SAT solvers



Most Recent Backtracking Scheme



Most Recent Backtracking Scheme




Most Recent Backtracking Scheme

e Learnt clause: (aV cVf)

e No need to assign a =1 -
backtrack to most recent
decision: f =0

e Search algorithm is no
longer a traditional
backtracking scheme




Unique Implication Points (UIPs)

h e

e Exploit structure from the implication graph
— To have a more aggressive backtracking policy

e |dentify additional clauses to be learnt
[Marques-Silva&Sakallah'96]

— Create clauses (aV ¢V f) and (—i V f)
— Imply not only a=1 but also i =0
e 1st UIP scheme is the most efficient [Zhang&al'01]

— Create only one clause (=i V f)
— Avoid creating similar clauses involving the same literals



Clause deletion policies

o Keep only the small clauses [Marques-Silva&Sakallah'96]

— For each conflict record one clause
— Keep clauses of size < K
— Large clauses get deleted when become unresolved

o Keep only the relevant clauses [Bayardo&Schrag'97]
— Delete unresolved clauses with < M free literals
e Keep only the clauses that are used [Goldberg&Novikov'02]

— Keep track of clauses activity



Data Structures

Key point: only unit and unsatisfied clauses must be detected
during search
— Formula is unsatisfied when at least one clause is unsatisfied
— Formula is satisfied when all the variables are assigned and
there are no unsatisfied clauses

In practice: unit and unsatisfied clauses may be identified
using only two references

Standard data structures (adjacency lists):

— Each variable x keeps a reference to all clauses containing a
literal in x

Lazy data structures (watched literals):

— For each clause, only two variables keep a reference to the
clause, i.e. only 2 literals are watched



Standard Data Structures (adjacency lists)

literals0 = 4 .
lleasi=0 e Each variable x keeps a reference
to all clauses containing a literal in
X
unit — If variable x is assigned, then all
clauses containing a literal in x
literals0 = 4
st 1 are evaluated
size=5 — If search backtracks, then all
clauses of all newly unassigned
— variables are updated
satisfied
e Total number of references is L,
literals0 = 5 where L is the number of literals
literalsl= 0
size=5

unsatisfied



Lazy Data Structures (watched literals)

| |
@3 @1
L
@ @3 @1
,,,,,,,,,,,,,,,,, & &
@ @s3 @7 @1
|
@ @ @ @7 @1
L
@3 @1

e For each clause, only two

unresolved
variables keep a reference to the
clause, i.e. only 2 literals are
watched
unresolved — If variable x is assigned, only
the clauses where literals in x
are watched need to be
_ evaluated
unit — If search backtracks, then
nothing needs to be done
e Total number of references is
satisfied 2 x C, where C is the number

of clauses

— In general L > 2 x C, in

particular if clauses are learnt
after backtracking to level 4



Search Heuristics

e Standard data structures: heavy heuristics
— DLIS: Dynamic Large Individual Sum [Marques-Silva'99]
> Selects the literal that appears most frequently in unresolved
clauses

e Lazy data structures: light heuristics
— VSIDS: Variable State Independent Decaying Sum
[Moskewicz&al'01]
» Each literal has a counter, initialized to zero
> When a new clause is recorded, the counter associated with
each literal in the clause is incremented
> The unassigned literal with the highest counter is chosen at
each decision
— Other variations
» Counters updated also for literals in the clauses involved in
conflicts [Goldberg&Novikov'02]



Restarts |

%below

03 4+—r

N T T #backtracks
(o} 2000 4000 6000 8000 10000 12000

e Plot for processor verification instance with branching
randomization and 10000 runs

— More than 50% of the runs require less than 1000 backtracks
— A small percentage requires more than 10000 backtracks
e Run times of backtrack search SAT solvers characterized by
heavy-tail distributions



Restarts |l

cutoff cutoff

o Repeatedly restart the search each time a cutoff is reached

— Randomization allows to explore different paths in search tree
e Resulting algorithm is incomplete

— Increase the cutoff value

— Keep clauses from previous runs

cutoff



Conclusions

e The ingredients for having an efficient SAT solver
— Mistakes are not a problem
> Learn from your conflicts
> ... and perform non-chronological backtracking
> Restart the search
— Be lazy!
> Lazy data structures
> Low-cost heuristics



Thank you!
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