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Abstract

This paper proposes new algorithms for the Binate Covering Problem (BCP), a well-known restriction of Boolean
Optimization. Binate Covering finds application in many areas of Computer Science and Engineering. In Artificial Intel-
ligence, BCP can be used for computing minimum-size prime implicants of Boolean functions, of interest in Automated
Reasoning and Non-Monotonic Reasoning. Binate Covering isalso an essential modeling tool in Electronic Design Au-
tomation (EDA). The objectives of the paper are to briefly review algorithmic solutions for BCP, and to describe how to
apply search pruning techniques from the Boolean Satisfiability (SAT) domain to BCP. Furthermore, we generalize these
pruning techniques, in particular the ability to backtracknon-chronologically, to exploit the actual formulation ofthe bi-
nate covering problem. Experimental results, obtained on representative instances indicate that the proposed techniques
provide significant performance gains for different classes of instances.

1 Introduction

The generic Boolean Optimization problem as well as severalof its restrictions are well-known computationally hard
problems, widely used as modeling tools in Computer Scienceand Engineering. These problems have been the subject of
extensive research work in the past (see for example [1]). Inthis paper we address the Binate Covering Problem (BCP),
one of the restrictions of Boolean Optimization. BCP can be formulated as the problem of finding a satisfying for a
given Conjunctive Normal Form (CNF) formula subject to minimizing a given cost function. As with generic Boolean
Optimization, BCP also finds many applications, including the computation of minimum-size prime implicants, of interest
in Automated Reasoning and Non-Monotonic Reasoning [16], and as a modeling tool in Electronic Design Automation
(EDA) [11, 14].

In recent years, several powerful algorithmic techniques have been proposed for solving BCP, allowing dramatic
improvements in the ability to solving large and complex instances of BCP1. Despite these improvements, and as with
other NP-hard problems, new effective techniques allow in general very significant gains, both in the amount of search and
in the run times. The ultimate consequence of proposing new algorithmic techniques is the potential ability for solving
new classes of instances.

The main objective of this paper is to propose additional techniques for pruning the amount of search in branch-
and-bound algorithms for solving covering problems. Thesetechniques correspond to generalizations and extensions
of similar techniques proposed in the Boolean Satisfiability (SAT) domain, where they have been shown to be highly
effective [2, 17, 19]. In particular, and to our best knowledge, we provide for the first time conditions which enable branch-
and-bound algorithms to backtracknon-chronologicallywhenever upper and lower bound conditions require boundingto
take place.

This paper is organized as follows. In Section 2 the notationused throughout the paper is introduced. Afterwards,
branch-and-bound covering algorithms are briefly reviewed, giving emphasis to solutions based on SAT algorithms. In
Section 4 we propose new techniques for reducing the amount of search. In particular we show how effective search
pruning techniques from the SAT domain can be generalized and extended to the BCP domain. Experimental results are
presented in Section 5, and the paper concludes in Section 6.1Several examples of these techniques can be found in [4, 5, 10, 12].
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2 Preliminaries

An instanceC of a covering problem is defined as follows,

minimize
nPj=1 
j � xj

subject to A � x � b; x 2 f0; 1gn (1)

where
j is a non-negative integer cost associated with variablexj ; 1 � j � n andA �x � b; x 2 f0; 1gn denote the set of
linear constraints. If every entry(m� n) of matrixA is in the setf0; 1g andbi = 1; 1 � i � m, thenC is an instance of
theunate covering problem(BCP). Moreover, if the entriesaij of A belong tof�1; 0; 1g andbi = 1�jfaij : aij = �1gj,
thenC is an instance of thebinate covering problem(BCP). It is interesting to observe that ifC is an instance of the binate
covering problem, then each constraint can be interpreted as a propositional clause.

Conjunctive Normal Form (CNF) formulas are introduced next. Because the set of constraints of an instanceC of
BCP is equivalent to a CNF formula, and because some of the search pruning techniques described in the remainder of
the paper are easier to convey in this alternative representation.

A propositional formula' in Conjunctive Normal Form(CNF) denotes a boolean functionf : f0; 1gn ! f0; 1g. The
formula' consists of a conjunction of propositional clauses, where each clause! is a disjunction of literals, and a literall is either a variablexj or its complement�xj . If a literal assumes value 1, then the clause issatisfied. If all literals of a
clause assume value 0, the clause isunsatisfied. Clauses with only one unassigned literal are referred to asunit. Finally,
clauses with more than one unassigned literal are said to beunresolved. In a search procedure, aconflict is said to be
identified when at least one clause is unsatisfied. We should also observe that a clause! = (l1 + � � �+ lk); k � n, can be
interpreted as a linear inequalityl1+ � � �+ lk � 1, and the complement of a variablexj , �xj , can be represented by1�xj .

When a clause is unit (with only one unassigned literal) an assignment can be implied. For instance, consider a
propositional formula' which contains clause! = (x1 + �x2) and assume thatx2 = 1. For' to be satisfied,x1 must
be assigned value 1 due to!. Therefore, we say thatx2 = 1 impliesx1 = 1 due to! or that clause! explainsthe
assignmentx1 = 1. These logical implications correspond to the applicationof the unit clause rule [7] and the process of
repeatedly applying this rule is calledboolean constraint propagation[17]. We should note that throughout the remainder
of this paper some familiarity with backtrack search SAT algorithms is assumed. The interested reader is referred to the
bibliography (see for example [1, 17] for additional references).

Covering problems are often solved by branch and bound algorithms [4, 10, 18]. In these cases, each node of the
search tree corresponds to a selected unassigned variable and the two branches out of the node represent the assignment
of 1 and 0 to that variable. These variables are nameddecision variables. The first node is called theroot (or the top node)
of the search tree and corresponds to thefirst decision level. Hence, the top nodes define the first decision levels of the
search tree.

3 Backtrack Search Algorithms for Covering Problems

The most widely known approach for solving covering problems is the classical branch and bound procedure [11], in
whichupper boundson the value of the cost function are identified for each solution to the constraints, andlower bounds
on the value of the cost function are estimated considering the current set of variable assignments. The search can be
pruned whenever the lower bound estimation is higher than orequal to the most recently computed upper bound. In these
cases we can guarantee that a better solution cannot be foundwith the current variable assignments and therefore the
search can be pruned. The algorithms described in [4, 12, 18]follow this approach.

There are several lower bound estimation procedures that can be used, namely the ones based on linear-programming
relaxations [12] or lagrangian relaxations [15], but the approximation of a maximum independent set of clauses [5] is the
most commonly used one. The tightness of the lower bounding procedure is crucial for the algorithm’s efficiency, because
with higher estimates of the lower bound, the search can be pruned earlier. For a better understanding of lower bounding
mechanisms, a method of approximation of a maximum independent set of clauses is described in section 3.3. Moreover,
in recent years several powerful problem instances simplification techniques have been proposed. See [3, 4, 5, 9, 18] for
detailed description of these techniques.

In the next few sections we briefly review alternative approaches for solving BCP, which are known to be competitive
for specific types of instances, e.g. when the constraints are hard to solve. These approaches, namely the ones based
on boolean satisfiability algorithms, have different pruning strategies which are not commonly used in branch and bound
algorithms for solving BCP. In section 3.2 an algorithm which combines features from both approaches is described.



int min prime(') fub =P 
j;
while (ub � 0) f' = ' [ fP 
j � xj < ubg;

status = solve sat(');' = '� fP 
j � xj < ubg;
if (status == SATISFIABLE)ub =P 
j � xj;
else break;g

return ub;g
Figure 1: SAT-based linear search algorithm

3.1 SAT-Based Linear Search Algorithm

In [1] P. Barth describes how to solve pseudo-boolean optimization (i.e. a generalization of BCP) using a propositional
satisfiability (SAT) algorithm. However, the algorithm described in [1] is based on the Davis-Putnam [7] procedure, which
has been shown to be particularly inefficient for a large number of instances of SAT. In [13], a new algorithm based on the
GRASP SAT algorithm [17] is proposed, which is able to obtainbetter experimental results. Both these two algorithms
interpret the binate covering problem (BCP) as a SAT problemdefined by the constraintsA �x � b, but with the additional
constraint of having to find a solution with lower cost than anupper bound value. The possible values assumed by the cost
function for the different assignments to the problem variablesfx1; : : : ; xng range from 0, when all variables are assigned
value 0, to

Pnj=1 
j , when all variables with
j > 0 are assigned value 1. Initially, the upper boundubon the value of the
cost function is given by: ub = nXj=1 
j + 1 (2)

SAT-based linear search algorithms perform a linear searchon the possible values of the cost function, starting from
the highest (given by (2)), at each step requiring the next computed solution to have a cost less than the most recently
computed upper bound. Whenever a new solution is found whichsatisfies all the constraints, the upper boundub is
updated to: ub = nXj=1 
j � xj (3)

If the resulting instance of SAT is not satisfiable, then the solution to the instance of BCP is given byub. Starting with theub given by (2), SAT-based linear search algorithms consist ofapplying the following steps (see fig 1):

1. Create a new constraint
Pnj=1 
j � xj < ub. This inequality basically requires that a computed solution must have

a lower cost than the best one found so far.

2. Solve the resulting instance of a satisfiability problem,defined on linear inequalities. The modification of most SAT
algorithms to deal with this generalization is straightforward.

3. If the instance is satisfiable, then updateub according to (3) and go back to 1. Otherwise, the solution to the covering
problem isub. In those cases where the initial upper bound is never updated, the problem does not have a solution.

3.2 SAT-Based Branch and Bound Algorithm

Additional SAT-based BCP algorithms have been proposed. In[13] a new algorithmic organization is described,
consisting in the integration of several features from SAT algorithms in a branch and bound procedure,bsolo, to solve the
binate covering problem. This new framework frombsoloincorporates the main features from both approaches, namely
the bounding procedure and reduction techniques from branch and bound algorithms, and search pruning techniques from
SAT algorithms.

Originally, the algorithm presented in [13] already incorporated the main pruning techniques of the GRASP SAT
algorithm [17]. To our knowledge,bsolowas the first branch and bound algorithm for solving BCP that implemented



int bsolo(') fub =P 
j + 1;
while (TRUE) f

if (!reduce problem())
return ub;

identify partitions();
decide();
if (!consistent state())

return ub;
while (Estimate LB() � ub) f

Issue LB based conflict();
if (!consistent state())
return ub;ggg

int consistent state() f
do f

while (Deduce() == CONFLICT)
if (diagnose() == CONFLICT)
return FALSE;

apply deduction = FALSE;
if (Solution found()) f

Update ub();
Issue UB based conflict();
apply deduction = TRUE;gg while (apply deduction);

return TRUE;g
Figure 2: SAT-based branch and bound algorithm

a non-chronological backtracking search strategy, clauserecording and identification of necessary assignments. Mainly
due to an effective conflict analysis procedure which allowsnon-chronological backtracking steps to be identified,bsolo
performs better than other branch and bound algorithms in several classes of instances, as shown in [13]. However,
non-chronological backtracking was limited to one specifictype of conflict. In section 4 we describe how to apply non-
chronological backtracking toall types of conflicts. The main steps of the algorithm (see fig. 2)can be described as
follows:

1. Initialize the upper bound to the highest possible value as defined in (2).

2. Apply functionreduceproblemto reduce the problem instance dimension by applying the techniques from standard
branch and bound covering algorithms. Afterwards, identify problem partitions and branch on a given decision
variable (i.e. make a decision assignment).

3. The functionconsistentstatechecks whether the current state yields a conflict. This is done by applying boolean
constraint propagation and, in case a conflict is reached, byinvoking the conflict analysis procedure, recording
relevant clauses and proceeding with the search procedure or backtrack if necessary.

4. If a solution to the constraints has been identified, update the upper bound according to (3) and issue an upper bound
conflict to backtrack on the search tree. (Observe that the only way to reduce the value of the current solution is to
backtrack with the objective of finding a solution with a lower cost.)

5. Estimate a lower bound given the current variable assignments. If this value is higher than or equal to the current
upper bound, issue a lower bound conflict and bound the searchby applying the conflict analysis procedure to
determine the node to backtrack to (using functionconsistentstate). Continue the search from step 2.

3.3 Maximum Independent Set of Clauses

The estimation of lower bounds on the value of the cost function is a very effective method to prune the search tree
and the accuracy of lower bounding procedures is critical for identifying areas of the search space where solutions to the



maximal independent set(') f
MIS = empty set;
dof! = choose clause(');

MIS = MIS [ f!g;' = delete intersecting clauses(',!);g while (' not empty);
return MIS;g
Figure 3: Algorithm for computing a MIS

constraints with lower values of the cost function cannot befound. This section reviews a commonly used greedy method
to estimate a lower bound on the value of the cost function based on independent set of clauses, which is also detailed for
example in [3].

The greedy procedure consists of finding a setI of disjoint unate clauses, i.e. clauses with only positive literals and
with no literals in common between them. Since maximizing the cost ofI is a NP-hard problem, a greedy computation
is used, as shown in fig. 3. The effectiveness of this method largely depends on the clauses included inI . Usually, one
chooses the clause which maximizes the ratio between its weight and its number of elements.

The minimum cost for satisfyingI is a lower bound on the value of the problem instance and is given by,Cost(I) =X!2IWeight(!) where (4)Weight(!) = minxj2! 
j (5)

3.4 Upper and Lower Bound Conflicts

In bsolothere are three types of conflicts which can arise:logical conflictsthat occur from the problem constraints,
upper bound conflictsthat occur when a solution to the constraints is found, andlower bound conflictsthat take place
when the lower bound is higher than or equal to the upper bound. When logical conflicts occur, the conflict analysis
procedure from GRASP is applied and determines to which decision level the search should backtrack to (possibly in a
non-chronological manner).

However, the other two types of conflicts are treated differently. In bsolo, whenever we have an upper or lower bound
conflict, a new clausemustbe added to the problem instance in order for a logical conflict to be issued and, consequently,
to bound the search. This requirement is inherited from the GRASP SAT algorithm where, for guaranteeing completeness,
both conflicts and implied variable assignmentsmustbe explained in terms of the existing variable assignments [17]. With
respect to conflicts, each recorded conflict clause is built using the assignments that are deemed responsible for the conflict
to arise. If the assignmentxj = 1 (or xj = 0) is considered responsible, the literal�xj (respectively, literalxj) is added
to the conflict clause. This literal basically states that inorder to avoid the conflict one possibility is certainly to have
the assignmentxj = 0 (respectively,xj = 1). Clearly, by construction, after the clause is built its state is unsatisfied.
Consequently, the conflict analysis procedure has to be called to determine to which decision level the algorithm must
backtrack to. Hence the search is bound.

We start by studying upper bound conflicts. In these situations, one possible approach to build a clause to bound the
search would be to include all decision variables in the search tree. In this case, the conflict would always depend on the
last decision variable. Therefore, backtracking due to upper bound conflicts would necessarily be chronological (i.e.to
the previous decision level), hence guaranteeing that the algorithm would be complete.

The previous strategy can also be used for lower bound conflicts. By building a clause involving all decision assign-
ments present in the search tree, we guarantee that the search is bound and ensure that the algorithm is complete. Suppose
that the setfx1 = 1; x2 = 0; x3 = 0; x4 = 1g corresponds to all the search tree decision assignments and!lb is the clause
to be added due to a lower bound conflict. Then we would have!lb = (�x1 + x2 + x3 + �x4). Again, the problem with this
approach (which was used in [13]) is that backtracking is always chronological, since it depends on all decisions made. In
sections 4.1 and 4.2 we will present new ways for building these clauses, which enable non-chronological backtracking
due to upper and lower bound conflicts.



4 SAT-Based Pruning Techniques for BCP

One of the main features ofbsolo is the ability to backtrack non-chronologically when conflicts occur. This feature
is enabled by the conflict analysis procedure inherited fromthe GRASP SAT algorithm. However, as illustrated in sec-
tion 3.4, in the originalbsoloalgorithm non-chronological backtracking was only possible for logical conflicts. In the case
of an upper or lower bound conflict all the search tree decision assignments were used to explain the conflict. Therefore,
these conflicts would depend on the last decision level and backtracking would always be chronological.

In this section we describe how to compute sets of assignments that explain upper and lower bound conflicts. More-
over, we show that these assignments are not in general associated with all decision levels in the search tree; hence
non-chronological backtracking can take place.

4.1 Dependencies in Upper Bound Conflicts

As mentioned in Section 3.4, upper bound conflicts correspond to the process of bounding the search when a new
solution (with lower cost) is found. Inbsolo, and because of the conflict analysis procedure, the bounding process
requires creating a new conflict clause. Moreover, all decision variables were present in this clause, thus preventing
non-chronological backtracks from occurring. However, itis straightforward to conclude that the assignments which
characterize the computed solution are the ones that allow the value of the cost function to grow, i.e., the assignments of 1
to variables with positive cost in the cost function. Therefore, we should backtrack to a decision level where at least one
of these assignments is toggled to its complemented value. Let!ub be the clause added due to an upper bound conflict.
This clause is defined by: !ub = fl = �xj : Cost(xj) > 0 ^ xj = 1g (6)

Consequently, it becomes possible to backtrack non-chronologically after identifying an upper bound conflict. This is
illustrated next.

Let f(x1; x2; x3; x4) = x1 + x2 + x3 be the cost function to minimize, and the set of constraints be:(x1 + x4) � (�x4 + �x2) � (x3 + x4) � (�x3 + x4) (7)

Let us assume the sequence of decision assignmentsx1 = 1 andx2 = 0. Suppose that the next decision assignment isx3 = 1, that impliesx4 = 1. Then all clauses are satisfied, and the value of the cost function is 2. Next, an upper bound
conflict is issued, the clause!ub = (�x1 + �x3) is created (observe that the assignmentx2 = 0 is irrelevant for being able
to reduce the current upper bound estimate) and decisionx3 = 1 is erased. Afterwards, the assignmentx3 = 0 is implied
(from !ub), which again impliesx4 = 1 from (7), thus satisfying all clauses. In this case the valueof the cost function is
1. Now, since the value ofx3 is implied, we can readily create a new upper bound conflict clause(�x1), which indicates
that we should backtrackimmediatelyto the decision stage where the assignmentx1 = 1 is defined. Hence, we backtrack
non-chronologically, skipping the backtrack to the decision assignmentx2 = 0.

4.2 Dependencies in Lower Bound Conflicts

A lower bound conflict in a binate covering problem (BCP)C arises when the lower bound is equal to or higher than
the upper bound and we can write this condition as follows:C:path+ C:lower � C:upper (8)

whereC.pathis the cost of the assignments already made,C.lower is a lower bound estimate on the cost for satisfying
the clauses still not satisfied, andC.upperis the best solution found so far. From the previous equation, we can readily
conclude thatC.pathandC.lowerare the unique components involved in each lower bound conflict. (Notice thatC.upper
is just the value of the cost function for a solution computedearlier in the search process.) Therefore, we will analyze
bothC.pathandC.lowercomponents in order to establish the assignments responsible for a given lower bound conflict.

We start by studyingC.path. Clearly, the variable assignments that cause the value ofC.pathto grow are solely those
assignments with a value of 1. Hence, we can define a set of literals!
p, such that each variable in!
p has positive cost
and is assigned value 1: !
p = fl = �xj : Cost(xj) > 0 ^ xj = 1g (9)

which basically states that to decrease the value of the costfunction (i.e. C.path) at least one variable that is assigned
value 1 has instead to be assigned value 0. (Observe that!
p is equivalent to!ub, as described in Section 4.1.)



We now considerC.lower. LetMISbe the independent set of clauses, obtained by the method described in section 3.3,
that determines the value ofC.lower. Note that each clause inMIS is part ofMISbecause it is neither satisfied nor covered
by some other clause inMIS. Clearly, for each clause!i these conditions only hold due to the literals in!i that are assigned
value 0. If any of these literals was assigned value 1,!i would certainly not be inMISsince it would be a satisfied clause.
Consequently, we can define a set of literals that explain thevalue ofC.lower:!
l = fl : l = 0 ^ l 2 !i ^ !i 2MISg (10)

Now, as stated above, a lower bound conflict is solely due to the two componentsC.pathandC.lower. Hence, this lower
bound conflict will hold as long as the following clause!lb is unsatisfied:!lb = !
p [ !
l (11)

(Observe that the set union symbol in the previous equation denotes conjunction of clauses.) As long as this clause is
unsatisfied, the values ofC.pathandC.lowerwill remain unchanged, and so the lower bound conflict will exist. We can
thus use this unsatisfied clause!lb to analyze the lower bound conflict and decide where to backtrack to, using the conflict
analysis procedure of GRASP [17]. We should observe that backtracking can be non-chronological, because clause!lb
does not necessarily depend on all decision assignments.

With respect to (11) a more careful analysis allows us to conclude that not all of these literals are necessary. Suppose
that the lower bound is higher than the upper bound and define this difference asdi� = (C:path+C:lower)�C:upper.
It is clearly true that ifC:path was lower bydi� , the lower bound conflict would still hold because we would haveC:upper = C:path+ C:lower. Therefore, we may conclude that not all assignments inC:path are necessary to explain
the conflict, since if some assignments were not made, we would still have a lower bound conflict. In this case, it is
possible to remove some literals from!
p such that their cost is lower than or equal todi� .

In order to implement this technique, one interesting problem is to decide which literals should be removed from!
p.
In bsoloan heuristic procedure is used for removing the literals that have been assigned at the most recent levels of the
decision tree. Consequently, the likelihood of backtracking non-chronologically is higher, since these conflicts will be
more dependent on the earlier levels of the search tree. Notice that if a literall is removed from!
p, but if l 2 !
l to
explain the value inC:lower, then we must havel 2 !lb and there is no reduction in the dependencies of the conflict
clause.

Moreover, it is interesting to observe that a clause resulting from a lower bound conflict can be simpler. We have only
described how simplifications can be made to theC.pathcomponent, but other simplifications can also be applied to the
literals added due to the independent set of clauses (MIS). Suppose we have a literall = xj , with l 2 !
l and letxj = 0.
If xj only belongs to one clause!i of the independent set and its cost is higher than or equal to the minimum cost of!i,
thenl can be removed from!lb. To better understand how this is possible, suppose insteadthatxj = 1. In this situation,!i would not be in the independent set (it would be a satisfied clause) and theC:lower component would be lower2.
However, since the cost of the variable is higher than or equal to the minimum cost of!i, theC:path component would be
higher, and hence the conflict would still hold. So, the assignmentxj = 0 is irrelevant for the conflict to arise and literall
can be removed from!lb.
4.3 Handling Reduction Techniques

As mentioned in the previous sections, for implementing non-chronological backtracking each implied variable as-
signment needs to be properly explained in order to guarantee that the resulting branch-and-bound algorithm is complete.
Consequently, it is necessary that, whenever there is a variable assignment implied due to the application of a reduction
technique (e.g., variable dominance, limit lower bound theorem, etc.), a new clause is built and added to the problem
instance as an explanation for that assignment. Clearly, wecould create this new clause by using all decision assignments
in the decision tree, but this would negatively affect the ability of the search algorithm to backtrack non-chronologically.
As before, we must identify conditions for using a reduced set of assignments instead of all decision assignments. In this
section we illustrate how this is done for assignments implied due to the application of the limit lower bound theorem. For
the other reduction techniques, a similar approach is used.

The limit lower bound theorem [4] is applied to a variablexj whenever,C:upper � (C:path+ C:lower) � Cost(xj) (12)2In fact, if theC:lower would be recomputed all over again, it is not guaranteed thatit would decrease. Nevertheless, we know that without clause! satisfied byxj = 1, MISnf!g it is still an independent set of clauses. Therefore,MISnf!g can be used as a low estimation ofC:lower.



lp-solve cplex scherzo opbdp min-prime bsolo
Benchmark min. CPU CPU CPU CPU CPU CPU

aim-100-16-yes1-2 100 – – – 1104.5 0.01 0.28
aim-100-34-yes1-4 100 – – 11.56 0.19 0.15 0.68
aim-100-60-yes1-1 100 – 295.2 0.87 0.02 0.05 0.28
aim-200-16-yes1-3 200 – – – – 0.05 0.41
aim-200-34-yes1-1 200 – – – 9.60 0.22 2.86
aim-200-60-yes1-2 200 – – 184.18 1.13 1.79 1.71
aim-50-16-yes1-1 50 757.3 113.4 0.76 0.02 0.01 0.06
aim-50-20-yes1-2 50 1284.5 107.6 1.81 0.09 0.01 0.11
aim-50-34-yes1-3 50 86.4 62.2 0.18 0.01 0.02 0.09

ii8a1 54 162.8 63.0 0.33 0.62 63.0 0.52
ii8a2 – ub 149 ub 147 – ub 141 ub 150 ub 140
ii8b1 191 ub 243 840.4 – ub 191 ub 191 1042.19
ii8c1 – ub 364 ub 304 – ub 302 ub 302 ub 302
ii8d1 – – ub 367 – – ub 343 ub 343
jnh1 92 – ub 93 20.47 0.59 6.90 4.49

jnh12 94 – 2251.7 0.87 0.01 0.16 0.25
jnh7 89 ub 89 ub 90 1.49 0.10 3.60 0.63

ssa7552-038 1148 – ub 1449 – ub 1452 ub 1449 109.20
ssa7552-159 1327 ub 1327 ub 1327 14.16 ub 1327 ub 1327 4.58
ssa7552-160 1359 ub 1359 ub 1359 – ub 1359 ub 1359 9.26

Table 1: Algorithm comparison

In these cases, the assignmentxj = 0 is implied.
Let !llb be a clause that must be added in order to explain the assignment xj = 0, which is implied by applying the

limit lower bound theorem. Notice that this theorem is applied because of the values ofC:path andC:lower. Thus, the
assignments that explain these two values are also the explanation sought for the assignmentxj = 0. Therefore, clause!llb is constructed as follows, !llb = !
p [ !
l [ f�xjg (13)

where!
p and!
l are the literals which explain the values inC:path andC:lower, as described in section 4.2. Therefore,!llb becomes a new unit clause and consequently implies the assignmentxj = 0. (Hence, we say that the assignmentxj = 0 is explained by!llb.)
5 Experimental Results

In this section we compare different algorithms for solvingBCP on two different sets of instances. The first set, whose
results are shown in table 1, consists of instances from the minimum-size prime implicant problem for Boolean functions.
These instances were obtained from satisfiable instances ofthe DIMACS benchmark set [6], using the model described
in [13, 16]. The second set, whose results are shown in all subsequent tables, consists of instances from the minimum-size
test pattern problem [8].

For the experimental results given below, the CPU times wereobtained on a SUN Sparc Ultra I, running at 170MHz,
and with 100 MByte of physical memory. In all cases the maximum CPU time that each algorithm was allowed to spend
on any given instance was 1 hour.

Whenever an algorithm was not able to find the optimum value for a given problem instance, the best computed upper
bound is shown (provided the algorithm was able to compute one). In some situations, the reason for the algorithm to
abort is shown. This can be because the time limit was reachedor because the available memory was not enough.

In table 1 we present experimental results for several algorithms for instances of the minimum-size prime implicant
problem. This comparison involves the general purpose linear programming toolslp-solveand commercial optimization
tool cplex, the BCP branch-and-bound algorithmscherzo[5], the SAT-based linear search algorithmsopbdp[1] andmin-
prime [13], and the proposed algorithmbsolo. We should note thatscherzowas specifically developed for solving BCP
and includes several powerful search pruning techniques.

The results in this table clearly show how ineffective general purpose algorithms are for solving the minimum-size
prime implicant problem, and support the conclusion that more dedicated algorithms may well be the most adequate
choice. It should be observed that, in spite of the problem reduction techniques that it incorporates,scherzoperforms
very poorly. The main reason for this fact is that the techniquesscherzoincorporates are more suited for solving less



bsolo no LB explanation LB explanation
Benchmark min. CPU Dec. NCB Jump CPU Dec. NCB Jump

cordic Fa2@0 6 0.14 48 14 5 0.21 47 14 4
cordic Fa3@0 6 0.16 53 14 5 0.18 52 14 4
cordic Fa3@1 6 0.25 100 6 4 0.27 105 6 4
cordic Fa4@1 6 0.17 84 4 3 0.18 84 4 3

misex1Fd0@1 4 0.36 39 0 1 0.25 25 0 1
misex1Fd1@0 4 0.32 53 3 5 0.18 38 4 5
misex1Fd3@1 3 0.36 48 5 4 0.28 39 4 4

misex3Fa@0 9 112.60 1352 34 7 52.02 834 78 14
misex3Fa@1 9 42.09 756 25 5 30.58 642 56 9
misex3Fb@0 9 313.87 1887 24 6 95.83 1152 119 9
misex3Fb@1 8 96.27 1078 26 6 79.69 978 70 8

pcler8 Fi@1 2 0.41 78 9 2 0.39 78 9 2
pcler8 Fj@1 4 0.21 87 11 2 0.21 87 11 2
pcler8 Fk@1 4 0.53 119 3 2 0.51 121 4 2
term1 Fb@0 7 0.37 125 10 3 0.31 90 6 3
term1 Fb@1 7 0.31 140 13 3 0.27 100 7 3
term1 Fc@0 4 0.30 77 9 4 0.29 74 9 4
term1 Fd@1 4 0.39 92 10 9 0.32 85 10 8

Table 2: Lower bound explanations

constrained problem instances. Due to more adequate pruning techniques from SAT algorithms,opbdpandmin-prime
are able to solve more instances than the other algorithms, but min-primeshows to be more competitive thanopbdpdue
to its greater search pruning ability. Despite the good results of these two algorithms,bsolodemonstrates to be the most
competitive algorithm in this problem domain, mainly becausebsolois able to use features from both branch and bound
and SAT algorithms.

As noted earlier, SAT-based BCP algorithms are better suited for instances whose constraints are hard to satisfy. In
table 2 we present the results ofbsolofor instances from the minimum-size test pattern problem [8]. This table includes
the CPU times, the number of decisions, the number of non-chronological backtracks and the highest jump made in the
search tree. On the left side of the table,bsolowas run without the lower bound explanation described in section 4 and
the non-chronological backtracks are just due to logical orupper bound conflicts. On the right side, the lower bound
explanation of section 4 is used and we can see thatbsolois able to increase the number of non-chronological backtracks
while significantly reducing the amount of search and the execution time for most instances.

Finally, in table 3 we present a comparison between several algorithms for the set of instances from the minimum-size
test pattern problem. Table 3 clearly shows that general purpose algorithms for solving 01-Integer Linear Programs (lp-
solveandcplex) perform poorly. The same is true forscherzowhich is not able to apply its main features to solving these
instances. The SAT-based linear search algorithmsopbdp[1] andmin-prime[13] are able to solve all instances. More-
over,bsoloresults are very competitive with the results of bothopbdpandmin-prime, mainly due to the new techniques
proposed in this paper.

6 Conclusions

This paper extends well-known search pruning techniques, from the Boolean Satisfiability domain, to branch-and-
bound algorithms for solving the Binate Covering Problem. Besides detailing a branch-and-bound BCP algorithm built on
top of a SAT solver, the paper describes conditions that allow for non-chronological backtracking in the presence of upper
and lower bound conflicts. In addition, the paper also describes how reduction techniques, commonly used in BCP solvers,
can be re-defined and utilized within a conflict analysis procedure, in such a way that non-chronological backtracking is
enabled. To our best knowledge, this is the first time that branch-and-bound algorithms are augmented with the ability for
backtracking non-chronologically in the presence of conflicts that result from upper and lower bound conditions.

Preliminary results obtained on several instances of the Binate Covering problem indicate that the proposed techniques
are indeed effective and can be significant for specific classes of instances.

A key aspect of the proposed techniques is the identificationof a small set of dependencies explaining each identified
conflict. In each case the main goal is to minimize the size of this set of dependencies, while guaranteeing that the
resulting set still provides a sufficient explanation for the given conflict to occur. Future research work will naturally
include seeking further simplification of the clauses created for each type of conflict. Moreover, additional techniques



lp-solve scherzo cplex opbdp min-prime bsolo
Benchmark min. CPU CPU CPU CPU CPU CPU

cordic Fa2@0 6 200.3 64.02 2.77 2.78 0.09 0.21
cordic Fa3@0 6 969.5 67.84 2.20 5.99 0.09 0.18
cordic Fa3@1 6 ub 7 97.37 9.02 3.95 0.83 0.27
cordic Fa4@1 6 time 84.13 3.12 2.27 0.63 0.18

misex1Fd0@1 4 261.7 0.39 59.47 0.06 0.14 0.25
misex1Fd1@0 4 60.7 0.47 149.73 0.06 0.19 0.18
misex1Fd3@1 3 24.0 0.26 72.07 0.06 0.14 0.28

misex3Fa@0 9 time mem. time 180.42 85.70 52.02
misex3Fa@1 9 time mem. time 207.81 111.24 30.58
misex3Fb@0 9 time mem. time 1354.45 549.04 95.83
misex3Fb@1 8 time mem. time 987.35 394.73 79.69

pcler8 Fi@1 2 19.8 2.37 3.52 0.74 0.40 0.39
pcler8 Fj@1 4 9.3 0.39 1.10 0.32 0.18 0.21
pcler8 Fk@1 4 8.2 0.28 5.48 0.48 0.28 0.51
term1 Fb@0 7 513.2 mem. 27.63 4.29 1.10 0.31
term1 Fb@1 7 404.6 256.42 22.83 8.85 0.62 0.27
term1 Fc@0 4 75.4 0.86 9.95 38.59 1.67 0.29
term1 Fd@1 4 150.3 1.50 11.82 12.14 1.93 0.32

Table 3: Algorithm comparison

from the SAT domain can potentially be applied to solving BCP. These techniques are likely to be significant for instances
of covering problems with sets of constraints that are hard to satisfy.
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