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Abstract

This paper proposes new algorithms for the Binate Coveriraplem (BCP), a well-known restriction of Boolean
Optimization. Binate Covering finds application in manyaa®f Computer Science and Engineering. In Atrtificial Intel-
ligence, BCP can be used for computing minimum-size prirpédamts of Boolean functions, of interest in Automated
Reasoning and Non-Monotonic Reasoning. Binate Coveriats@san essential modeling tool in Electronic Design Au-
tomation (EDA). The objectives of the paper are to brieflyaenalgorithmic solutions for BCP, and to describe how to
apply search pruning techniques from the Boolean SatisfiaSAT) domain to BCP. Furthermore, we generalize these
pruning techniques, in particular the ability to backtrac&n-chronologically, to exploit the actual formulationtbg bi-
nate covering problem. Experimental results, obtainedepresentative instances indicate that the proposed tgokesi
provide significant performance gains for different classéinstances.

1 Introduction

The generic Boolean Optimization problem as well as sewdrigs restrictions are well-known computationally hard
problems, widely used as modeling tools in Computer SciandeEngineering. These problems have been the subject of
extensive research work in the past (see for example [1}hitnpaper we address the Binate Covering Problem (BCP),
one of the restrictions of Boolean Optimization. BCP can dwenfulated as the problem of finding a satisfying for a
given Conjunctive Normal Form (CNF) formula subject to miizing a given cost function. As with generic Boolean
Optimization, BCP also finds many applications, includimg ¢omputation of minimum-size prime implicants, of instre
in Automated Reasoning and Non-Monotonic Reasoning [1],as a modeling tool in Electronic Design Automation
(EDA) [11, 14].

In recent years, several powerful algorithmic techniquagehbeen proposed for solving BCP, allowing dramatic
improvements in the ability to solving large and complexanses of BCP. Despite these improvements, and as with
other NP-hard problems, new effective techniques alloweimegal very significant gains, both in the amount of seardh an
in the run times. The ultimate consequence of proposing ngarithmic techniques is the potential ability for solving
new classes of instances.

The main objective of this paper is to propose additionahnégues for pruning the amount of search in branch-
and-bound algorithms for solving covering problems. Thiesdniques correspond to generalizations and extensions
of similar techniques proposed in the Boolean Satisfigh{8AT) domain, where they have been shown to be highly
effective [2, 17, 19]. In particular, and to our best knovgegwe provide for the first time conditions which enable ofran
and-bound algorithms to backtrankn-chronologicallywhenever upper and lower bound conditions require bourtding
take place.

This paper is organized as follows. In Section 2 the notatieed throughout the paper is introduced. Afterwards,
branch-and-bound covering algorithms are briefly revievgddng emphasis to solutions based on SAT algorithms. In
Section 4 we propose new techniques for reducing the amdwdasch. In particular we show how effective search
pruning techniques from the SAT domain can be generalizddeatended to the BCP domain. Experimental results are
presented in Section 5, and the paper concludes in Section 6.

I'Several examples of these techniques can be found in [4, 3210



2 Preliminaries

An instanceC of a covering problem is defined as follows,

minimize 3 Ci - Ti
PR @
subjectto A-z >b, ze€{0,1}"

wherec; is a non-negative integer cost associated with variahlé < j < nandA-z > b,z € {0,1}" denote the set of
linear constraints. If every entiyn x n) of matrix 4 is in the sef0, 1} andb; = 1,1 < i < m, thenC'is an instance of
theunate covering probleBCP). Moreover, if the entries;; of A belongto{—1,0,1}andb; = 1—|{a;; : a;; = —1}|,
thenC'is an instance of thieinate covering problenBCP). It is interesting to observe thatifis an instance of the binate
covering problem, then each constraint can be interpret@dosopositional clause.

Conjunctive Normal Form (CNF) formulas are introduced né3¢cause the set of constraints of an instaficef
BCP is equivalent to a CNF formula, and because some of threlspauning techniques described in the remainder of
the paper are easier to convey in this alternative reprasent

A propositional formulap in Conjunctive Normal FornflCNF) denotes a boolean functign {0,1}" — {0, 1}. The
formulay consists of a conjunction of propositional clauses, whashelausev is a disjunction of literals, and a literal
I is either a variable:; or its complement;. If a literal assumes value 1, then the claussasfied If all literals of a
clause assume value 0, the clauserisatisfied Clauses with only one unassigned literal are referred umnis Finally,
clauses with more than one unassigned literal are said tintesolved In a search procedure,canflictis said to be
identified when at least one clause is unsatisfied. We shésddbaéserve that a clause= (11 + --- + 1), k < n, can be
interpreted as a linear inequality+ - - - +1; > 1, and the complement of a variahle, z;, can be represented bby- z;.

When a clause is unit (with only one unassigned literal) agigasnent can be implied. For instance, consider a
propositional formulap which contains clause = (z1 + Z») and assume that, = 1. Forp to be satisfiedz; must
be assigned value 1 due ¢0 Therefore, we say that, = 1 impliesz; = 1 due tow or that clausev explainsthe
assignment; = 1. These logical implications correspond to the applicatibtihe unit clause rule [7] and the process of
repeatedly applying this rule is callbdolean constraint propagatidi7]. We should note that throughout the remainder
of this paper some familiarity with backtrack search SAToaidnms is assumed. The interested reader is referred to the
bibliography (see for example [1, 17] for additional refezes).

Covering problems are often solved by branch and bound ithgos [4, 10, 18]. In these cases, each node of the
search tree corresponds to a selected unassigned vanabthreatwo branches out of the node represent the assignment
of 1 and 0 to that variable. These variables are nadeeikion variablesThe first node is called theot (or the top node)
of the search tree and corresponds tofttet decision level Hence, the top nodes define the first decision levels of the
search tree.

3 Backtrack Search Algorithms for Covering Problems

The most widely known approach for solving covering prokdesthe classical branch and bound procedure [11], in
which upper bound®en the value of the cost function are identified for each smfutio the constraints, arldwer bounds
on the value of the cost function are estimated considelingctirrent set of variable assignments. The search can be
pruned whenever the lower bound estimation is higher thaguoal to the most recently computed upper bound. In these
cases we can guarantee that a better solution cannot be Watinthe current variable assignments and therefore the
search can be pruned. The algorithms described in [4, 1Zpll8)v this approach.

There are several lower bound estimation procedures thaieased, namely the ones based on linear-programming
relaxations [12] or lagrangian relaxations [15], but theragimation of a maximum independent set of clauses [5]as th
most commonly used one. The tightness of the lower boundimgggalure is crucial for the algorithm’s efficiency, because
with higher estimates of the lower bound, the search can ineggrearlier. For a better understanding of lower bounding
mechanisms, a method of approximation of a maximum indegersit of clauses is described in section 3.3. Moreover,
in recent years several powerful problem instances siroatifin techniques have been proposed. See [3, 4, 5, 9, 18] for
detailed description of these techniques.

In the next few sections we briefly review alternative apphes for solving BCP, which are known to be competitive
for specific types of instances, e.g. when the constraimtdard to solve. These approaches, namely the ones based
on boolean satisfiability algorithms, have different pngnstrategies which are not commonly used in branch and bound
algorithms for solving BCP. In section 3.2 an algorithm whoombines features from both approaches is described.



int mnprine(y) {
ub = cj;
while (ub>0) {

=9 U {Y ¢-zj <ub};
status = solvessat (y);

p=9—{d ¢z <ub);
if (status == SATI SFI ABLE)

ub:ZCj':L’]‘;

el se break;

return ub;

}

Figure 1: SAT-based linear search algorithm

3.1 SAT-Based Linear Search Algorithm

In [1] P. Barth describes how to solve pseudo-boolean opétitn (i.e. a generalization of BCP) using a propositional
satisfiability (SAT) algorithm. However, the algorithm deibed in [1] is based on the Davis-Putnam [7] procedurectvhi
has been shown to be particularly inefficient for a large nainathinstances of SAT. In [13], a new algorithm based on the
GRASP SAT algorithm [17] is proposed, which is able to obtadtter experimental results. Both these two algorithms
interpret the binate covering problem (BCP) as a SAT proldefied by the constraints- = > b, but with the additional
constraint of having to find a solution with lower cost tharugper bound value. The possible values assumed by the cost
function for the different assignments to the problem \@ea{z1, .. .,z,} range from 0, when all variables are assigned
value 0, toZ?:1 ¢;, when all variables witlr; > 0 are assigned value 1. Initially, the upper bowtbn the value of the
cost function is given by:

ub=> ¢;+1 )
j=1

SAT-based linear search algorithms perform a linear seancthe possible values of the cost function, starting from
the highest (given by (2)), at each step requiring the nextprded solution to have a cost less than the most recently
computed upper bound. Whenever a new solution is found whétisfies all the constraints, the upper bourds
updated to:

ub = Z ¢j T (3)
j=1

If the resulting instance of SAT is not satisfiable, then thletson to the instance of BCP is given by. Starting with the
ub given by (2), SAT-based linear search algorithms consiapplying the following steps (see fig 1):

1. Create a new constrailt’_, ¢; - z; < ub. This inequality basically requires that a computed sohuthust have
a lower cost than the best one found so far.

2. Solve the resulting instance of a satisfiability probldefined on linear inequalities. The modification of most SAT
algorithms to deal with this generalization is straightfard.

3. Ifthe instance is satisfiable, then updat@ccording to (3) and go back to 1. Otherwise, the solutioheéabvering
problem isub. In those cases where the initial upper bound is never uggdgie problem does not have a solution.

3.2 SAT-Based Branch and Bound Algorithm

Additional SAT-based BCP algorithms have been proposed13ha new algorithmic organization is described,
consisting in the integration of several features from Sibathms in a branch and bound procedir®glq to solve the
binate covering problem. This new framework fraasoloincorporates the main features from both approaches, yamel
the bounding procedure and reduction techniques from brand bound algorithms, and search pruning techniques from
SAT algorithms.

Originally, the algorithm presented in [13] already incorgted the main pruning techniques of the GRASP SAT
algorithm [17]. To our knowledgeysolowas the first branch and bound algorithm for solving BCP thailéemented



int bsolo(y) {
ub = Z(:j +1;
while (TRUE) {
if (!reduce_problemn())

return ub,
identifypartitions();
deci de();
if (!consistent state())
return ub;

while (EstimateLB() > ub) {
| ssue_LBbased_conflict();
if (!consistent state())

return ub,
}
}
}
int consistent state() {
do {
whi | e (Deduce() == CONFLICT)
if (diagnose() == CONFLI CT)

return FALSE;
appl y_deducti on = FALSE;
if (Solutionfound()) {
Updat e_ub() ;
| ssue_UB_based_conflict();
appl y_deduction = TRUE;

} while (apply-deduction);
return TRUE;
}

Figure 2: SAT-based branch and bound algorithm

a non-chronological backtracking search strategy, clagserding and identification of necessary assignmentsniylai
due to an effective conflict analysis procedure which allows-chronological backtracking steps to be identifleshlo
performs better than other branch and bound algorithmsvarakclasses of instances, as shown in [13]. However,
non-chronological backtracking was limited to one spetjfie of conflict. In section 4 we describe how to apply non-
chronological backtracking tall types of conflicts. The main steps of the algorithm (see figca?) be described as
follows:

1. Initialize the upper bound to the highest possible vatudefined in (2).

2. Apply functionreduceproblemto reduce the problem instance dimension by applying tHenigaes from standard
branch and bound covering algorithms. Afterwards, idgmiifoblem partitions and branch on a given decision
variable (i.e. make a decision assignment).

3. The functionconsistenistatechecks whether the current state yields a conflict. This rmeday applying boolean
constraint propagation and, in case a conflict is reachedmmking the conflict analysis procedure, recording
relevant clauses and proceeding with the search procedbexktrack if necessary.

4. If a solution to the constraints has been identified, uptle upper bound according to (3) and issue an upper bound
conflict to backtrack on the search tree. (Observe that theveay to reduce the value of the current solution is to
backtrack with the objective of finding a solution with a laveest.)

5. Estimate a lower bound given the current variable assigmsn If this value is higher than or equal to the current
upper bound, issue a lower bound conflict and bound the sdgr@pplying the conflict analysis procedure to
determine the node to backtrack to (using functionsistenistatd. Continue the search from step 2.

3.3 Maximum Independent Set of Clauses

The estimation of lower bounds on the value of the cost fonds a very effective method to prune the search tree
and the accuracy of lower bounding procedures is criticaidentifying areas of the search space where solutionseto th



mexi mal i ndependent set () {
MS = enpty set;

do{

w

M

choose_cl ause( ¢) ;
= MS U {w}
%) del ete.intersectingclauses(p, w);
} while (¢ not enpty);
return MS;

}

nwmiu

Figure 3: Algorithm for computing a MIS

constraints with lower values of the cost function canndidumd. This section reviews a commonly used greedy method
to estimate a lower bound on the value of the cost functiordbas independent set of clauses, which is also detailed for
example in [3].

The greedy procedure consists of finding akef disjoint unate clauses, i.e. clauses with only positiierdls and
with no literals in common between them. Since maximizirg¢bst of/ is a NP-hard problem, a greedy computation
is used, as shown in fig. 3. The effectiveness of this methagha depends on the clauses included inJsually, one
chooses the clause which maximizes the ratio between igghivand its number of elements.

The minimum cost for satisfying is a lower bound on the value of the problem instance and &nddy,

Cost(I) = Z Weight(w) where 4
wel
Weight(w) = mén ¢; (5)

3.4 Upper and Lower Bound Conflicts

In bsolothere are three types of conflicts which can arlsgical conflictsthat occur from the problem constraints,
upper bound conflictthat occur when a solution to the constraints is found, lameér bound conflictshat take place
when the lower bound is higher than or equal to the upper boWilden logical conflicts occur, the conflict analysis
procedure from GRASP is applied and determines to whichsi®ecievel the search should backtrack to (possibly in a
non-chronological manner).

However, the other two types of conflicts are treated difidye In bsolg whenever we have an upper or lower bound
conflict, a new clausmustbe added to the problem instance in order for a logical cdnflibe issued and, consequently,
to bound the search. This requirement is inherited from tRAGP SAT algorithm where, for guaranteeing completeness,
both conflicts and implied variable assignmemisstbe explained in terms of the existing variable assignmdmg With
respect to conflicts, each recorded conflict clause is bsiitigithe assignments that are deemed responsible for tfleeton
to arise. If the assignment; = 1 (or 2; = 0) is considered responsible, the litefgl (respectively, literal:;) is added
to the conflict clause. This literal basically states thabiider to avoid the conflict one possibility is certainly tovba
the assignment; = 0 (respectivelyz; = 1). Clearly, by construction, after the clause is built itatstis unsatisfied.
Consequently, the conflict analysis procedure has to beccédl determine to which decision level the algorithm must
backtrack to. Hence the search is bound.

We start by studying upper bound conflicts. In these sitnatione possible approach to build a clause to bound the
search would be to include all decision variables in thectetiee. In this case, the conflict would always depend on the
last decision variable. Therefore, backtracking due toenfyound conflicts would necessarily be chronological fice.
the previous decision level), hence guaranteeing thatlgfogithm would be complete.

The previous strategy can also be used for lower bound ctsmfly building a clause involving all decision assign-
ments present in the search tree, we guarantee that thé $&hmund and ensure that the algorithm is complete. Suppose
thatthe se{z; = 1,25 = 0,23 = 0,24 = 1} corresponds to all the search tree decision assignments gisthe clause
to be added due to a lower bound conflict. Then we would hgye- (z1 + z2 + 23 + Z4). Again, the problem with this
approach (which was used in [13)]) is that backtracking isagsswchronological, since it depends on all decisions made. |
sections 4.1 and 4.2 we will present new ways for building¢helauses, which enable non-chronological backtracking
due to upper and lower bound conflicts.



4 SAT-Based Pruning Techniques for BCP

One of the main features tisolois the ability to backtrack non-chronologically when cortlioccur. This feature
is enabled by the conflict analysis procedure inherited flioenGRASP SAT algorithm. However, as illustrated in sec-
tion 3.4, in the originabsoloalgorithm non-chronological backtracking was only pokesfbr logical conflicts. In the case
of an upper or lower bound conflict all the search tree degiagsignments were used to explain the conflict. Therefore,
these conflicts would depend on the last decision level ankitkacking would always be chronological.

In this section we describe how to compute sets of assigretieat explain upper and lower bound conflicts. More-
over, we show that these assignments are not in generaliagsbuvith all decision levels in the search tree; hence
non-chronological backtracking can take place.

4.1 Dependencies in Upper Bound Conflicts

As mentioned in Section 3.4, upper bound conflicts corredfiorthe process of bounding the search when a new
solution (with lower cost) is found. Isolg and because of the conflict analysis procedure, the bogratiocess
requires creating a new conflict clause. Moreover, all decisariables were present in this clause, thus preventing
non-chronological backtracks from occurring. Howevelisistraightforward to conclude that the assignments which
characterize the computed solution are the ones that dllewalue of the cost function to grow, i.e., the assignmefits o
to variables with positive cost in the cost function. Theref we should backtrack to a decision level where at least on
of these assignments is toggled to its complemented valekw ], be the clause added due to an upper bound conflict.
This clause is defined by:

Wy = {] =x;: COSt(fITj) > 0/\.77]‘ = 1} (6)

Consequently, it becomes possible to backtrack non-chogitally after identifying an upper bound conflict. This is
illustrated next.
Let f(x1,za, 3, 24) = 21 + 22 + x3 be the cost function to minimize, and the set of constraiats b

(SL'] + 1‘4) . (Cf’4 + CE'Q) . (1‘3 + 1‘4) . (Cf’3 + 1‘4) (7)

Let us assume the sequence of decision assignmentsl andz, = 0. Suppose that the next decision assignment is
x3 = 1, thatimpliesz, = 1. Then all clauses are satisfied, and the value of the costifumis 2. Next, an upper bound
conflict is issued, the clause,, = (z1 + Z3) is created (observe that the assignment 0 is irrelevant for being able
to reduce the current upper bound estimate) and decigien 1 is erased. Afterwards, the assignment= 0 is implied
(from w,), which again implies:; = 1 from (7), thus satisfying all clauses. In this case the valube cost function is
1. Now, since the value af; is implied, we can readily create a new upper bound conflaais#(z; ), which indicates
that we should backtradknmediatelyto the decision stage where the assignment 1 is defined. Hence, we backtrack
non-chronologically, skipping the backtrack to the demsassignment; = 0.

4.2 Dependencies in Lower Bound Conflicts

A lower bound conflict in a binate covering problem (BGParises when the lower bound is equal to or higher than
the upper bound and we can write this condition as follows:

C.path + C.lower > C.upper (8)

whereC.pathis the cost of the assignments already matiggweris a lower bound estimate on the cost for satisfying
the clauses still not satisfied, atdupperis the best solution found so far. From the previous equatiencan readily
conclude thaC.pathandC.lowerare the unique components involved in each lower bound confiNlotice thaiC.upper
is just the value of the cost function for a solution compuadier in the search process.) Therefore, we will analyze
bothC.pathandC.lowercomponents in order to establish the assignments respeffsita given lower bound conflict.

We start by studying.path Clearly, the variable assignments that cause the val@epaithto grow are solely those
assignments with a value of 1. Hence, we can define a set @l$ite,, such that each variable in., has positive cost
and is assigned value 1:

wep = {l =Z; : Cost(z;) >0Nz; =1} 9)

which basically states that to decrease the value of thefanstion (i.e. C.path at least one variable that is assigned
value 1 has instead to be assigned value 0. (Observe th# equivalent tav,;, as described in Section 4.1.)



We now conside€.lower. LetMISbe the independent set of clauses, obtained by the methodlmisin section 3.3,
that determines the value Gflower. Note that each clause MISis part ofMIS because it is neither satisfied nor covered
by some other clause MIS. Clearly, for each clause; these conditions only hold due to the literalsinthat are assigned
value 0. If any of these literals was assigned value; Would certainly not be iMIS since it would be a satisfied clause.
Consequently, we can define a set of literals that explaindghes ofC.lower.

wer ={l:1=0Al€Ew;Nw; € MIS} (20)

Now, as stated above, a lower bound conflict is solely dueddwlo component€.pathandC.lower. Hence, this lower
bound conflict will hold as long as the following clausg is unsatisfied:

Wip = Wep Uwe (11)

(Observe that the set union symbol in the previous equatimoigs conjunction of clauses.) As long as this clause is
unsatisfied, the values @.pathandC.lowerwill remain unchanged, and so the lower bound conflict wilsex\We can
thus use this unsatisfied clausg to analyze the lower bound conflict and decide where to backtio, using the conflict
analysis procedure of GRASP [17]. We should observe thdtttaaking can be non-chronological, because clayge
does not necessarily depend on all decision assignments.

With respect to (11) a more careful analysis allows us to kmtecthat not all of these literals are necessary. Suppose
that the lower bound is higher than the upper bound and dédfis€ifference agiff = (C.path + C.lower) — C.upper.

It is clearly true that ifC.path was lower bydiff, the lower bound conflict would still hold because we wouldéa

C.upper = C.path + C.lower. Therefore, we may conclude that not all assignmen€s.jmth are necessary to explain
the conflict, since if some assignments were not made, wednstill have a lower bound conflict. In this case, it is
possible to remove some literals fram, such that their cost is lower than or equakif .

In order to implement this technique, one interesting probis to decide which literals should be removed frog.

In bsoloan heuristic procedure is used for removing the literals llaae been assigned at the most recent levels of the
decision tree. Consequently, the likelihood of backtragkion-chronologically is higher, since these conflictd
more dependent on the earlier levels of the search tree c&\titat if a literall is removed fromw,,, butifl € w, to
explain the value irC.lower, then we must havé € w;;, and there is no reduction in the dependencies of the conflict
clause.

Moreover, it is interesting to observe that a clause resyftiom a lower bound conflict can be simpler. We have only
described how simplifications can be made to@pathcomponent, but other simplifications can also be applieti¢o t
literals added due to the independent set of clauseky). Suppose we have a literiak= z;, with € w,, and letz; = 0.

If z; only belongs to one clausg of the independent set and its cost is higher than or equlktoninimum cost of;,
then/ can be removed frona;,. To better understand how this is possible, suppose insitedd; = 1. In this situation,
w; would not be in the independent set (it would be a satisfiedselpand the&.lower component would be lower.
However, since the cost of the variable is higher than or gquhe minimum cost o&;, theC.path component would be
higher, and hence the conflict would still hold. So, the assigntz; = 0 is irrelevant for the conflict to arise and litefal
can be removed fromy;.

4.3 Handling Reduction Techniques

As mentioned in the previous sections, for implementing-olbronological backtracking each implied variable as-
signment needs to be properly explained in order to guagahtd the resulting branch-and-bound algorithm is coraplet
Consequently, it is necessary that, whenever there is ablarassignment implied due to the application of a redactio
technique (e.g., variable dominance, limit lower boundtken, etc.), a new clause is built and added to the problem
instance as an explanation for that assignment. Clearlgontl create this new clause by using all decision assigtsnen
in the decision tree, but this would negatively affect thiitylof the search algorithm to backtrack non-chronoladiiz
As before, we must identify conditions for using a reducdd$assignments instead of all decision assignments. $n thi
section we illustrate how this is done for assignments ietptiue to the application of the limit lower bound theorent. Fo
the other reduction techniques, a similar approach is used.

The limit lower bound theorem [4] is applied to a variablewhenever,

C.upper — (C.path + C.lower) < Cost(z;) (12)

2In fact, if the C.lower would be recomputed all over again, it is not guaranteedithaiuld decrease. Nevertheless, we know that without elaus
w satisfied byr; = 1, M1S\{w} itis still an independent set of clauses. Therefdre] S\ {w} can be used as a low estimation@fower.



Ip-solve cplex | scherzo | opbdp | min-prime bsolo

Benchmark| min. CPU CPU CPU CPU CPU CPU
aim-100-16-yes1-2 100 - — — 1104.5 0.01 0.28
aim-100-34-yes1-4 100 - — 11.56 0.19 0.15 0.68
aim-100-60-yes1-1| 100 - 295.2 0.87 0.02 0.05 0.28
aim-200-16-yes1-3 200 - — — - 0.05 0.41
aim-200-34-yes1-1 200 - — — 9.60 0.22 2.86
aim-200-60-yes1-2| 200 - - 184.18 1.13 1.79 1.71

aim-50-16-yes1-1 50 757.3 113.4 0.76 0.02 0.01 0.06
aim-50-20-yes1-2 50 1284.5 107.6 1.81 0.09 0.01 0.11
aim-50-34-yes1-3 50 86.4 62.2 0.18 0.01 0.02 0.09
iisal 54 162.8 63.0 0.33 0.62 63.0 0.52

iiBa2 — ub 149 ub 147 — ub 141 ub 150 ub 140

ii8b1 191 ub 243 840.4 — ub 191 ub 191 | 1042.19

iiscl - ub 364 ub 304 - ub 302 ub 302 ub 302

iisd1l — - ub 367 — - ub 343 ub 343

jnh1 92 - ub 93 20.47 0.59 6.90 4.49

jnh12 94 - 2251.7 0.87 0.01 0.16 0.25

jnh7 89 ub 89 ub 90 1.49 0.10 3.60 0.63
ssa7552-038] 1148 — | ub 1449 — | ub 1452 ub 1449 109.20
ssa7552-159| 1327 | ub 1327 | ub 1327 14.16 | ub 1327 ub 1327 4.58
ssa7552-160 1359 | ub 1359 | ub 1359 — | ub 1359 ub 1359 9.26

Table 1: Algorithm comparison

In these cases, the assignment= 0 is implied.

Let wy;, be a clause that must be added in order to explain the assigame= 0, which is implied by applying the
limit lower bound theorem. Notice that this theorem is apglbecause of the values @fpath andC.lower. Thus, the
assignments that explain these two values are also theretjua sought for the assignment = 0. Therefore, clause
wyyp 1S constructed as follows,

wiih = Wep Uwea U {7‘]} (13)

wherew,., andw,; are the literals which explain the valuesitpath andC'.lower, as described in section 4.2. Therefore,
wyp becomes a new unit clause and consequently implies thenassigz; = 0. (Hence, we say that the assignment
x; = 0is explained bywy;.)

5 Experimental Results

In this section we compare different algorithms for solVBQP on two different sets of instances. The first set, whose
results are shown in table 1, consists of instances from thermam-size prime implicant problem for Boolean functions
These instances were obtained from satisfiable instandbe @IMACS benchmark set [6], using the model described
in [13, 16]. The second set, whose results are shown in adlesyent tables, consists of instances from the minimum-siz
test pattern problem [8].

For the experimental results given below, the CPU times wbtained on a SUN Sparc Ultra |, running at 170MHz,
and with 100 MByte of physical memory. In all cases the maxmTPU time that each algorithm was allowed to spend
on any given instance was 1 hour.

Whenever an algorithm was not able to find the optimum value fgiven problem instance, the best computed upper
bound is shown (provided the algorithm was able to compu&.olm some situations, the reason for the algorithm to
abort is shown. This can be because the time limit was reamhleelcause the available memory was not enough.

In table 1 we present experimental results for several dhgos for instances of the minimum-size prime implicant
problem. This comparison involves the general purposatipeogramming toolfp-solveand commercial optimization
tool cplex the BCP branch-and-bound algoritlstherzd5], the SAT-based linear search algorithopbdp[1] and min-
prime[13], and the proposed algorithbsola We should note thatcherzowas specifically developed for solving BCP
and includes several powerful search pruning techniques.

The results in this table clearly show how ineffective gaheurpose algorithms are for solving the minimum-size
prime implicant problem, and support the conclusion thatentedicated algorithms may well be the most adequate
choice. It should be observed that, in spite of the probleshicgon techniques that it incorporatesherzoperforms
very poorly. The main reason for this fact is that the techagscherzoincorporates are more suited for solving less



bsolo no LB explanation LB explanation
Benchmark | min. CPU | Dec. | NCB | Jump| CPU | Dec. | NCB | Jump
cordicFa2@0 6 0.14 48 14 5 0.21 47 14 4
cordicFa3@0 6 0.16 53 14 5 0.18 52 14 4
cordic Fa3@1 6 0.25 | 100 6 4 0.27 105 6 4
cordicFad@1 6 0.17 84 4 3 0.18 84 4 3
misex1FdO@1 4 0.36 39 0 1 0.25 25 0 1
misex1Fd1@0 4 0.32 53 3 5 0.18 38 4 5
misex1Fd3@1 3 0.36 48 5 4 0.28 39 4 4
misex3Fa@0 9 | 112.60 | 1352 34 7 | 52.02 834 78 14
misex3Fa@1 9 42.09 | 756 25 5] 30.58 | 642 56 9
misex3Fb@0 9 | 313.87 | 1887 24 6 | 95.83 | 1152 119 9
misex3Fb@1 8 96.27 | 1078 26 6 | 79.69 978 70 8
pcler8Fi@1 2 0.41 78 9 2 0.39 78 9 2
pcler8 Fj@1 4 0.21 87 11 2 021 87 11 2
pcler8 Fk@1 4 0.53 119 3 2 0.51 121 4 2
term1Fb@0 7 0.37 125 10 3 0.31 90 6 3
term1Fb@1 7 0.31 140 13 3 0.27 100 7 3
term1Fc@0 4 0.30 77 9 4 0.29 74 9 4
termlFd@1 4 0.39 92 10 9 0.32 85 10 8

Table 2: Lower bound explanations

constrained problem instances. Due to more adequate rtechniques from SAT algorithmepbdpandmin-prime

are able to solve more instances than the other algorithmsnin-primeshows to be more competitive thapbdpdue

to its greater search pruning ability. Despite the goodItesd these two algorithm$isolodemonstrates to be the most
competitive algorithm in this problem domain, mainly besalosolois able to use features from both branch and bound
and SAT algorithms.

As noted earlier, SAT-based BCP algorithms are betterdtiiteinstances whose constraints are hard to satisfy. In
table 2 we present the resultstifolofor instances from the minimume-size test pattern problemT8is table includes
the CPU times, the number of decisions, the number of noondhogical backtracks and the highest jump made in the
search tree. On the left side of the taldeplowas run without the lower bound explanation described iticed and
the non-chronological backtracks are just due to logicalmwer bound conflicts. On the right side, the lower bound
explanation of section 4 is used and we can seeltbalbis able to increase the number of non-chronological backsra
while significantly reducing the amount of search and theetien time for most instances.

Finally, in table 3 we present a comparison between sevigralitnms for the set of instances from the minimum-size
test pattern problem. Table 3 clearly shows that genergigagr algorithms for solving 01-Integer Linear Prograips (
solveandcpleX perform poorly. The same is true fecherzavhich is not able to apply its main features to solving these
instances. The SAT-based linear search algoritbpixp[1] and min-prime[13] are able to solve all instances. More-
over,bsoloresults are very competitive with the results of bogfbdpandmin-prime mainly due to the new techniques
proposed in this paper.

6 Conclusions

This paper extends well-known search pruning technigues) the Boolean Satisfiability domain, to branch-and-
bound algorithms for solving the Binate Covering Probleresiles detailing a branch-and-bound BCP algorithm built on
top of a SAT solver, the paper describes conditions thatveibo non-chronological backtracking in the presence ofarpp
and lower bound conflicts. In addition, the paper also dbsesrhow reduction techniques, commonly used in BCP solvers,
can be re-defined and utilized within a conflict analysis ptage, in such a way that non-chronological backtracking is
enabled. To our best knowledge, this is the first time thatdhraand-bound algorithms are augmented with the ability fo
backtracking non-chronologically in the presence of cottlihat result from upper and lower bound conditions.

Preliminary results obtained on several instances of thatBiCovering problem indicate that the proposed techsique
are indeed effective and can be significant for specific eme$instances.

A key aspect of the proposed techniques is the identificati@nsmall set of dependencies explaining each identified
conflict. In each case the main goal is to minimize the sizehisf $et of dependencies, while guaranteeing that the
resulting set still provides a sufficient explanation foe tiven conflict to occur. Future research work will natyrall
include seeking further simplification of the clauses addbr each type of conflict. Moreover, additional technigue



Ip-solve | scherzo | cplex opbdp | min-prime | bsolo

Benchmark| min. CPU CPU CPU CPU CPU | CPU
cordicFa2@0 6 200.3 64.02 2.77 2.78 0.09 0.21
cordic Fa3@0 6 969.5 67.84 2.20 5.99 0.09 0.18
cordicFaz@1 6 ub 7 97.37 9.02 3.95 0.83 0.27
cordicFa4@1 6 time 84.13 3.12 2.27 0.63 0.18
misex1FdO@1 4 261.7 0.39 59.47 0.06 0.14 | 0.25
misex1Fd1@0 4 60.7 0.47 | 149.73 0.06 0.19 0.18
misex1Fd3@1 3 24.0 0.26 72.07 0.06 0.14 | 0.28
misex3Fa@0 9 time mem. time 180.42 85.70 | 52.02
misex3Fa@1 9 time mem. time 207.81 111.24 | 30.58
misex3Fb@0 9 time mem. time | 1354.45 549.04 | 95.83
misex3Fb@1 8 time mem. time 987.35 394.73 | 79.69
pcler8Fi@1 2 19.8 2.37 3.52 0.74 0.40 0.39
pcler8 Fj@1 4 9.3 0.39 1.10 0.32 0.18 0.21
pcler8 Fk@1 4 8.2 0.28 5.48 0.48 0.28 0.51
term1Fb@0 7 513.2 mem. 27.63 4.29 1.10 0.31
termlFb@1 7 404.6 | 256.42 | 22.83 8.85 0.62 0.27
termlFc@0 4 75.4 0.86 9.95 38.59 1.67 0.29
termlFd@1 4 150.3 1.50 11.82 12.14 1.93 0.32

Table 3: Algorithm comparison

from the SAT domain can potentially be applied to solving BURese techniques are likely to be significant for instances
of covering problems with sets of constraints that are hasatisfy.
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