
Effective Lower Bounding Techniques for Pseudo-Boolean Optimization

Vasco M. Manquinho and João Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal

{vmm,jpms}@sat.inesc-id.pt

Abstract

Linear Pseudo-Boolean Optimization (PBO) is a widely
used modeling framework in Electronic Design Automa-
tion (EDA). Due to significant advances in Boolean Sat-
isfiability (SAT), new algorithms for PBO have emerged,
which are effective on highly constrained instances. How-
ever, these algorithms fail to handle effectively the informa-
tion provided by the cost function of PBO. This paper ad-
dresses the integration of lower bound estimation methods
with SAT-related techniques in PBO solvers. Moreover, the
paper shows that the utilization of lower bound estimates
can dramatically improve the overall performance of PBO
solvers for most existing benchmarks from EDA.

1. Introduction

Recent advances in Boolean Satisfiability (SAT) have re-
sulted in new practical algorithms for solving the Linear
Pseudo-Boolean Optimization problem [2, 4, 6]. These al-
gorithms perform a linear search on the possible values of
the cost function, starting from the highest, at each step re-
quiring the next computed solution to have a cost lower
than the previous one. If the resulting instance is not sat-
isfiable, then the optimal value is given by the last com-
puted solution. By incorporating important features
from SAT solvers, like non-chronological backtrack-
ing in the search tree, conflict-based learning mecha-
nisms and lazy data structures, these solvers have been
able to solve with success several classes of highly con-
strained pseudo-boolean instances. However, these solvers
also fail to handle effectively the information provided
by the cost function, which can be crucial as the experi-
mental results in this paper clearly demonstrate. In order
to prune the search due to the value of the cost func-
tion we propose the use of methods to estimate a lower
bound on the value of the cost function. Whenever the
lower bound estimation is higher or equal to the best so-
lution found so far, we are able to prune the search tree.
Moreover, we also establish conditions for backtrack-
ing non-chronologically in the search tree when the search

backtracks due to the lower bound estimate. This paper ex-
tends [9] by considering alternative lower bounding proce-
dures.

The paper is organized as follows. The first part con-
centrates on describing how different lower bound esti-
mation methods can be applied in pseudo-boolean opti-
mization problem, focusing on linear-programming relax-
ation and Lagrangian relaxation. Section 4 proposes tech-
niques for obtaining explanations that allow backtracking
non-chronologically when the search is bound due to the
lower bound estimate. In addition, the paper presents a num-
ber of additional techniques that have proved useful in prac-
tical PBO solving. Preliminary experimental results are an-
alyzed in section 6 for most existing PBO benchmarks for
EDA problems. Finally, the paper concludes in section 7.

2. Preliminaries

In a propositional formula, a literal lj denotes either a
variable xj or its complement x̄j . If a literal lj = xj and
xj is assigned value 1 or lj = x̄j and xj is assigned value
0, then the literal is said to be true. Otherwise, the literal is
said to be false.

An instance P of a Linear Pseudo-Boolean Optimization
problem can be defined as follows,

minimize
∑

j∈N

cj · xj

subject to
∑

j∈N

aij lj ≥ bi,

xj ∈ {0, 1}, aij , bi ∈ N
+

0 , i ∈ M,
N = {1, . . . , n},M = {1, . . . ,m}

(1)

where cj is a non-negative integer cost associated with vari-
able xj , j ∈ N and aij denote the coefficients of the literals
lj in the set of m linear constraints. Every pseudo-boolean
formulation can be rewritten such that all coefficients aij

and right-hand side bi be non-negative.
In a given constraint, if all aij coefficients have the same

value k, then it is called a cardinality constraint, since it only
requires that dbi/ke literals be true. A pseudo-boolean con-
straint where any literal set to true is enough to satisfy the
constraint, can be interpreted as a propositional clause. This



occurs when the value of all aij coefficients are greater than
or equal to bi.

If every constraint can be interpreted as a propositional
clause then P is an instance of the binate covering prob-
lem (BCP). Covering formulations have been the subject of
thorough research work that can be found in [5, 9, 15].

Notice that a linear pseudo-boolean optimization prob-
lem can also be viewed as a special case of linear integer
programming problem. The linear integer programming for-
mulation for the constraints can be obtained if we replace
literals x̄j by 1− xj . In section 3 we will use this latter for-
mulation.

3. Pseudo-Boolean Optimization Algorithms

In [3], P. Barth first proposed an approach based on
Boolean Satisfiability (SAT) techniques for solving Pseudo-
Boolean Optimization (PBO). This approach consists of
performing a linear search on the possible values of the cost
function, starting from the highest, at each step requiring the
next computed solution to have a cost lower than the previ-
ous one. If the resulting instance is not satisfiable, then the
solution is given by the last recorded solution. The general-
ization of recent advances in SAT resulted in new success-
ful algorithms [2, 4, 6] for several sets of PBO instances,
namely the incorporation of non-chronological backtrack-
ing in the search tree, conflict-based learning mechanisms
and lazy data structures have been applied with success.
The SAT-based approach focuses primarily on finding solu-
tions for the problem constraints. Therefore, for highly con-
strained problems these techniques are very effective. How-
ever, these algorithms find it difficult to deal with the infor-
mation from the cost function.

Unlike the SAT-based approach, branch-and-bound al-
gorithms [5, 8] have proved to be very effective when the
instances to be solved are not highly constrained since they
are able to prune the search tree earlier due to estimate of the
value of the cost function. In branch-and-bound algorithms
upper bounds on the value of the cost function are identi-
fied for each solution to the constraints, and lower bounds
on the value of the cost function are estimated considering
the current set of variable assignments. For a given instance
P of a pseudo-boolean optimization problem, let P.upper
denote the upper bound on the value of the cost function.
The search is pruned whenever the lower bound estimation
is higher than or equal to P.upper. In this case it is guar-
anteed that a better solution cannot be found with the cur-
rent variable assignments and therefore the search can be
pruned. The algorithms described in [5, 8, 9, 15] for the bi-
nate covering problem follow this approach as well as sev-
eral general integer programming solvers.

For several instances, specially for low constrained in-
stances, the tightness of the lower bounding procedure is
crucial for the algorithm’s efficiency, because with higher

estimates of the lower bound, the search can be pruned ear-
lier. Several procedures can be used for lower bound esti-
mation, namely the approximation of a maximum indepen-
dent set of constraints (MIS) [5, 9], linear-programming re-
laxations [8] or Lagrangian relaxations [12].

3.1. Linear Programming Relaxations

Although the approximation of a maximum indepen-
dent set of constraints (MIS) is the most widely used lower
bound procedure for the binate covering problem (a partic-
ular case of PBO) [5, 15], linear programming relaxation
(LPR) has also been used with success [8] . It is also of-
ten the case that the linear programming relaxation bound is
higher than the one obtained with the MIS approach. More-
over, linear programming relaxations have long been used
as a lower bound estimation procedure in branch-and-bound
algorithms for solving integer programming problems [11].

The general formulation of the LPR for a pseudo-
boolean problem is obtained from (1) as follows:

minimize zlpr = cx
subject to Ax ≥ b

0 ≤ x ≤ 1
(2)

where vector c defines the non-negative integer cost asso-
ciated with every decision variable in vector x. Entries of
matrix A defines the constraint coefficients and vector b the
right-hand side of every constraint. The solution of (1) is re-
ferred to as z∗cp, whereas the solution of (2) is referred to as
z∗lpr.

It is well-known that the solution z∗

lpr of (2) is a lower
bound on the solution z∗cp of (1) [11]. Basically, any solu-
tion of (1) is also a feasible solution of (2), but the con-
verse is not true. Moreover, for a given solution of (2) where
x ∈ {0, 1}n, we necessarily have z∗cp = z∗lpr. Hence, the re-
sult follows. Furthermore, different linear programming al-
gorithms can be used for solving (2), some with guaranteed
worst-case polynomial run time [11].

3.2. Lagrangian Relaxations

Lagrangian relaxation (LGR) is a widely used method
for computing bounds on the optimal value of the cost
function from network optimization to nonlinear program-
ming [12, 13]. It also known that for some instances, the
bound provided by the Lagrangian relaxation method is
tighter than the one obtained by the linear programming re-
laxation [12]. Therefore, Lagrangian relaxation can be used
to provide a quick and tight lower bound on the value of the
cost function for pseudo-boolean optimization problems.

While in linear programming relaxations we are able to
find a lower bound estimate by solving the problem con-
straints and relaxing the possible variable values, in La-
grangian relaxations we relax the problem constraints and



incorporate them in the objective function with associated
Lagrangian multipliers.

Given a generic linear optimization problem formulated
as:

minimize z∗ = cx
subject to Ax = b

x ∈ X
(3)

we can define the Lagrangian function L(µ) as:

L(µ) = min{cx + µ(Ax − b) : x ∈ X} (4)

where vector µ defines the Lagrangian multiplier associ-
ated with each constraint. The Lagrangian Bounding Prin-
ciple [12] states that for any vector µ of the Lagrangian mul-
tipliers, the value of L(µ) is a lower bound on the optimal
solution of the original optimization problem.

In (3) all constraints are formulated as equalities, while
in the pseudo-boolean optimization problem (1) we have in-
equality constraints. Therefore, in that case the Lagrangian
relaxation problem is formulated as:

L∗ = max{L(µ) : µ ≥ 0} (5)

where L∗ is the optimum value of the Lagrangian relax-
ation. The most tight lower bound estimate we can obtain
using this method is given by dL∗e.

Before trying to solve the Lagrangian relaxation prob-
lem in order to obtain L∗, we must determine the value of
L(µ) for a given value of µ. Notice that by expanding (4)
we have:

L(µ) = min{
∑

j∈N

cjxj +
∑

i∈M

µi((
∑

j∈N

aijxj) − bi)}

L(µ) = min{
∑

j∈N

αjxj −
∑

i∈M

µibi} where

αj = (cj +
∑

i∈M

µiaij)

(6)

In order to obtain the value of L(µ), for a given µ, we
must determine the value of the decision variables xj to be
able to minimize the expression. Therefore, we must have
xj = 0 whenever αj ≥ 0 and xj = 1 when αj < 0.

Literature from nonlinear programming [13] and net-
work optimization [12] provide methods to solve (5),
namely gradient methods to approximate the value of L∗.
For the results presented in this paper the approach out-
line in [12] is used.

4. Bound-based Conflicts

Conditions for backtracking non-chronologically due to
the lower bound estimate on the value of the cost func-
tion first proposed in [9] assume that the lower bounding
procedure is the MIS approximation. Next, we review the
main ideas about pruning the search tree based on the es-
timated value of the cost function and describe the condi-
tions to apply when using linear-programming relaxation or
Lagrangian relaxation as a lower bound estimation proce-
dure.

4.1. Backtracking on Bound-based Conflicts

A bound conflict in an instance of the pseudo-boolean
optimization problem (PBO) P arises when the lower bound
is equal to or higher than the upper bound. This condition
can be written as

P.path + P.lower ≥ P.upper (7)

where P.path is the cost of the assignments already made,
P.lower is a lower bound estimate on the cost of satisfying
the constraints not yet satisfied (as given for example us-
ing Lagrangian relaxation), and P.upper is the best solution
found so far.

In this situation, our approach is to identify a set of as-
signments responsible for the bound conflict and build a
new propositional clause ωbc such that it prevents those
assignments of being repeated during the search process.
When ωbc is added, a conflict analysis procedure must be
carried out to determine to which level of the search tree to
backtrack to.

A straightforward approach to build ωbc would be to
consider the decision variable assignments from all levels
of the search tree, but in that case the resulting backtrack
would necessarily be chronological. In [9] it was already
shown that the assignments responsible for the bound con-
flict might not be associated with all levels of the search
tree.

From (7), we can readily conclude that P.path and
P.lower are the unique components involved in each
bound conflict. Therefore, we will analyze both the P.path
and P.lower components in order to establish the assign-
ments responsible for a given bound conflict. Our goal is
to define two sets of literals ωpp and ωpl containing the ex-
planation for P.path and P.lower, respectively. Our bound
conflict clause ωbc is defined by the set union of the liter-
als in ωpp and ωpl.

We start by studying P.path. Clearly, the variable assign-
ments that cause the value of P.path to grow are solely those
assignments with a value of 1. Hence, we can define ωpp

such that each variable in ωpp has positive cost and is as-
signed value 1:

ωpp = {l = x̄j : Cost(xj) > 0 ∧ xj = 1} (8)

which basically states that in order to decrease the value of
the cost function (i.e.P.path) at least one variable that is as-
signed value 1 has instead to be assigned value 0.

We now consider P.lower. Since different lower bound
estimation procedures can be used, we will describe in the
remainder of this section how to identify an explanation for
the bound conflict when using either linear-programming
relaxation or Lagrangian relaxation.



4.2. Lower Bound Conflicts from Linear-
Programming Relaxation

When using linear-programming relaxations as a lower
bound estimation procedure, the value of P.lower is ob-
tained according to the formulation described in section 3.1.
In order to determine the set of assignments we can deem re-
sponsible for P.lower, we must define S as the set of con-
straints with slack1 variables assigned value 0 in the lin-
ear program solution. These are the constraints which ac-
tually limit the value of P.lower. If the literals that as-
sume value 0 in these constraints were to have a different
value, some constraints might be satisfied and the value of
P.lower would be lower. Therefore, we can consider the as-
signments to those literals as the responsible for P.lower
and define ωpl as:

ωpl = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ S} (9)

Clearly, ωpl does not necessarily depend on all decision lev-
els in the search tree. Hence, non-chronological backtrack-
ing can result from the conflict analysis procedure.

4.3. Lower Bound Conflicts from Lagrangian Re-
laxation

In order to determine ωpl using the Lagrangian relax-
ation lower bound estimation procedure as described in sec-
tion 3.2, we can follow a similar approach to the one de-
scribed for linear-programming relaxation. Let S be the set
of constraints used in obtaining the value of P.lower whose
Lagrangian multiplier is different from 0. We can clearly
notice from (6) that the constraints with Lagrangian mul-
tiplier equal to 0 are irrelevant for computing P.lower. In
this case, ωpl can be determined as formulated in (9).

Another approach to determine ωpl is to consider the
value of αj for each assigned variable from S. If a given
variable xj is assigned value 0 and αj > 0, then by chang-
ing its value to 1 we would increase the value of P.lower.
Or if variable xj is assigned value 1 and αj < 0, if we were
to change the value of xj , P.lower would raise. Hence,
these assignments cannot be deemed responsible for the
value of P.lower and should not be considered in ωpl.

5. Additional Techniques

In this section we describe additional techniques that
have proved useful in implementing a branch-and-bound
based PBO tool.

When using LPR for computing lower bounds, one can
use the information provided by the LP solution for branch-
ing purposes. Essentially, branching is restricted to vari-

1 See [13] for a definition of slack and artificial variables.

ables for which the LP solution is not integer. Of these vari-
ables, the one closest to 0.5 is selected. In the case more than
one variable has been assigned value 0.5, then the VSIDS
heuristic of Chaff is applied [10].

Another additional technique is the generation of a new
constraint when a new better solution is found. When this
occurs, P.upper is updated, and one can generate a new
constraint: ∑

j∈N

cjxj ≤ P.upper − 1 (10)

which requires that a new solution must have cost lower that
the lowest cost already identified for a solution. This type
of constraint is referred to as a knapsack constraint [11].
Suppose also the existence of a cardinality constraint of the
form: ∑

j∈K

xj ≥ U, K ⊆ N (11)

In this case we can infer a new constraint, that can be added
to the set of constraints. Let V be the sum of the U smallest
coefficients cj of variables denoted by set K. Thus we can
conclude: ∑

j∈K

cjxj ≥ V (12)

As a result, the following constraint can be inferred:
∑

j∈N−K

cjxj ≤ P.upper − 1 − V (13)

6. Experimental Results

In this section we present empirical results for the tech-
niques described in the paper using our pseudo-boolean
optimizer (bsolo) which incorporates the branch-and-
bound techniques described in the paper and SAT-based
techniques, namely boolean constraint propagation,
non-chronological backtracking in the search tree and
conflict-based learning mechanisms.

The CPU times presented are for a AMD Athlon proces-
sor at 1.9GHz with 1GB of physical memory. The time limit
for each instance was set to one hour. If the time limit was
reached, we provide an indication of which was the best up-
per bound (ub) value found when the search was stopped.

In order to empirically evaluate the lower bound proce-
dures described in the paper, we ran our solver on most
PBO instances available, most of which from EDA applica-
tions [2, 18, 17, 16] 2. Besides bsolo, we also ran PBS [2],
Galena [4] and the commercial MILP solver CPLEX (ver-
sion 7.5) [1]. For bsolo, we present results when using dif-
ferent lower bound methods (MIS, LGR and LPR) and also
when no lower bound estimation procedure is used (plain).

The bsolo solver was configured to use the constraint
strengthening technique described in [6] and widely used

2 Observe that the ones in [18] represent synthesis problems for mixed
PTL/CMOS circuits, and the ones in [16] represent PB satisfaction
problems.



in mixed integer programming [14]. The probing used in
the constraint strengthening is also used to detect necessary
assignments during preprocessing. We also used simplifica-
tion techniques described in [7, 15] in the synthesis bench-
mark set.

The results are presented in Table 1. As can be readily
concluded, different solvers perform better for different sets
of instances. In any case, there are a few clear trends. bsolo
(with LPR) is by far the most regular solver, and overall
the best performing solver, being able to solve 35 instances
out of a total of 40 instances. The other publicly available
PBO solvers, PBS and Galena, are solely able to solve 17
and 26 instances, respectively. It should be noted that the
general purpose MILP solver CPLEX is extremely compet-
itive, being clearly better that both PBS and Galena over all
instances. It is also clear that CPLEX is better suited for op-
timizing a cost function than for solving a set of pseudo-
boolean constraints, as the results for the last benchmarks
illustrate.

Despite being a more regular and overall better perform-
ing algorithm, bsolo performs worse than both PBS and
Galena for the last class of instances [16]. This is essen-
tially due to a significantly larger time per decision required
by bsolo, motivated by a less optimized implementation of
pseudo-boolean constraint propagation. Finally, bsolo with
LPR is significantly more efficient than bsolo with LGR.
This is motivated by the slow convergence observed for the
Lagrangian relaxation on most instances.

7. Conclusions

The paper describes the integration of lower bound es-
timation procedures with SAT-based techniques in lin-
ear pseudo-boolean optimization, emphasizing two lower
bounding methods: linear-programming relaxation and La-
grangian relaxation. The paper also outlines a proce-
dure for enabling non-chronological backtracking in the
search tree when bound conflicts occur. In addition, the pa-
per proposes a number of additional techniques, includ-
ing an informed branching heuristic, and a technique for
inferring constraints from knapsack and cardinality con-
straints.

Preliminary experimental results, obtained on most of
existing PBO benchmarks for EDA problems, are clear:
bsolo is the most effective PBO solver, far more effective
than either PBS [2] or Galena [4], and is the only dedi-
cated PBO solver that is competitive with (and overall sig-
nificantly more efficient than) the commercial MILP solver
CPLEX [1].

The very promising experimental results clearly demon-
strate that the integration of lower bounding techniques is a
crucial aspect in the development of PBO solvers, allowing
bsolo to be dramatically more efficient than the best pub-
licly available PBO solvers, PBS and Galena, which do not

utilize lower bounding techniques. As the experimental re-
sults also suggest, the time per decision in bsolo is larger
than in either PBS and Galena. This motivates fine-tuning
the implementation and data structures of the bsolo proto-
type.

References

[1] CPLEX MILP solver. http://www.ilog.com/products/cplex/.
[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Generic

ILP versus specialized 0-1 ILP: An update. In ACM/IEEE
International Conference on Computer Aided Design, pages
450–457, November 2002.

[3] P. Barth. A Davis-Putnam Enumeration Algorithm for Lin-
ear Pseudo-Boolean Optimization. Technical Report MPI-I-
95-2-003, Max Plank Institute for Computer Science, 1995.

[4] D. Chai and A. Kuehlmann. A Fast Pseudo-Boolean Con-
straint Solver. In Proc. ACM/IEEE Design Automation Con-
ference, pages 830–835, 2003.

[5] O. Coudert. On Solving Covering Problems. In Proc.
ACM/IEEE Design Automation Conference, pages 197–202,
June 1996.

[6] H. Dixon and M. Ginsberg. Inference Methods for a Pseudo-
Boolean Satisfiability Solver. In National Conference on Ar-
tificial Intelligence, pages 635–640, 2002.

[7] J. Hooker. Logic-Based Methods for Optimization. In . Jon
Wiley & Sons, 1996.

[8] S. Liao and S. Devadas. Solving Covering Problems Using
LPR-Based Lower Bounds. In Proc. ACM/IEEE Design Au-
tomation Conference, pages 117–120, 1997.

[9] V. Manquinho and J. Marques-Silva. Search pruning tech-
niques in sat-based branch-and-bound algorithms for the bi-
nate covering problem. IEEE Transactions on Computer-
Aided Design, 21(5):505–516, May 2002.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an Efficient SAT Solver. In Proc.
ACM/IEEE Design Automation Conference, pages 530–535,
June 2001.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinato-
rial Optimization. John Wiley & Sons, 1988.

[12] T. M. R. Ahuja and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Pearson Education, 1993.

[13] A. S. S. Nash. Linear and Nonlinear Programming. In .
McGraw-Hill, 1996.

[14] M. Savelsbergh. Preprocessing and probing for mixed inte-
ger programming problems. ORSA Journal on Computing,
6:445–454, 1994.

[15] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Explicit and Implicit Algorithms for Binate Cov-
ering Problems. IEEE Transactions on Computer Aided De-
sign, vol. 16(7):677–691, July 1997.

[16] J. Walser. 0-1 integer programming bench-
marks. http://www.ps.uni-sb.de/∼walser/benchmarks/-
benchmarks.html.

[17] S. Yang. Logic Synthesis and Optimization Benchmarks
User Guide. Microelectronics Center of North Carolina, Jan-
uary 1991.

[18] Z. Zhu. Synthesis for mixed ptl/cmos circuit. http://www-
unix.ecs.umass.edu/∼zzhu/.



bsolo
Ref. Benchmark Sol. pbs galena cplex plain MIS LGR LPR
[2] grout-4-3-1 62 ub 64 2.85 0.21 ub 64 ub 64 ub 64 0.28

grout-4-3-2 64 ub 66 19.42 0.07 ub 66 ub 64 ub 64 3.15
grout-4-3-3 62 ub 66 4.11 0.07 ub 64 ub 64 ub 66 1.34
grout-4-3-4 60 ub 62 6.51 0.04 ub 60 ub 60 ub 60 0.49
grout-4-3-5 60 ub 64 6.02 0.04 ub 62 ub 62 2316.90 5.90
grout-4-3-6 66 617.61 8.26 0.05 ub 66 ub 66 832.94 3.51
grout-4-3-7 64 1334.94 0.86 0.08 ub 66 ub 66 2777.80 2.00
grout-4-3-8 36 ub 44 17.90 0.06 ub 40 441.06 37.23 0.51
grout-4-3-9 68 1227.29 2.24 0.06 654.70 2106.5 204.32 1.73
grout-4-3-10 70 36.16 0.36 0.21 174.02 185.81 5.42 0.43

[18] 9symml 4517 ub 6453 ub 6986 1.63 ub 20818 ub 16792 347.13 328.97
C17 260 0.00 0.01 0.00 0.00 0.00 0.00 0.02
C432 4822 ub 6577 ub 8070 3.34 ub 25207 ub 23014 279.25 ub 4822
b1 128 0.00 0.00 0.00 0.00 0.00 0.00 0.01
c8 1194 ub 1542 ub 1528 0.19 ub 4350 ub 3819 0.19 0.23
cc 1567 ub 1692 ub 1786 0.00 ub 3305 ub 2738 0.09 0.08
cm42a 694 ub 754 ub 696 0.05 ub 1072 ub 789 0.06 0.05
cmb 1053 ub 1490 ub 1476 0.03 ub 7113 ub 5520 0.43 0.24
mux 872 ub 1321 ub 1333 0.01 ub 3430 ub 2060 0.00 0.06
my adder 4561 ub 6271 ub 5548 2.29 ub 19798 ub 12012 0.77 14.24

[17] 5xp1.b 12 ub 33 341.37 4.43 ub 14 78.17 ub 12 15.57
9sym.b 5 1718.98 0.26 0.14 ub 5 2.34 ub 6 0.89
alu4.b – ub 121 ub 53 ub 50 ub 52 ub 52 ub 50 ub 50
apex4.a 776 ub 2282 ub 845 3.92 ub 785 ub 783 ub 781 ub 776
bench1.pi 121 ub 1366 ub 784 2.89 ub 134 ub 131 ub 123 4.13
clip.b 15 ub 30 1.68 0.36 ub 16 49.11 ub 15 9.64
count.b 24 ub 48 ub 25 0.45 ub 25 ub 25 ub 25 0.81
e64.b – ub 99 ub 53 ub 49 ub 54 ub 53 ub 48 ub 50
f51m.b 18 ub 40 1.94 0.89 ub 19 6.62 ub 18 8.58
rot.b 115 ub 745 ub 142 71.56 ub 123 ub 122 ub 117 ub 117

[16] acc-tight:0 SAT 1.00 0.05 1.55 4.78 a 4.78 a 4.78 a 4.78 a

acc-tight:1 SAT 1.28 0.06 52.17 2.20 a 2.20 a 2.20 a 2.20 a

acc-tight:2 SAT 0.78 0.09 141.28 2.30 a 2.30 a 2.30 a 2.30 a

acc-tight:3 SAT 2.14 0.29 time 43.61 a 43.61 a 43.61 a 43.61 a

acc-tight:4 SAT 14.23 2.13 time 345.26 a 345.26 a 345.26 a 345.26 a

acc-tight:5 SAT 20.06 1.35 1897.48 57.82 a 57.82 a 57.82 a 57.82 a

acc-tight:6 SAT 26.98 0.61 time 41.90 a 41.90 a 41.90 a 41.90 a

acc-tight:7 SAT 12.84 1.28 time 7.85 a 7.85 a 7.85 a 7.85 a

acc-tight:8 SAT 9.51 2.77 time 58.80 a 58.80 a 58.80 a 58.80 a

acc-tight:9 SAT 10.44 0.20 time 36.51 a 36.51 a 36.51 a 36.51 a

#Solved 40 17 26 32 14 19 26 35

a For the instances from [16] the CPU times for the different versions of bsolo are the same. No lower bound estimation is
used, since there is no cost function.

Table 1. Experimental results


