On Applying Cutting Planes in DLL-Based
Algorithms for Pseudo-Boolean Optimization

Vasco Manquinho and Joao Marques-Silva

Technical University of Lisbon,
IST/INESC-ID, Lisbon, Portugal
{vmm, jpms}@sat.inesc-id.pt

Abstract. The utilization of cutting planes is a key technique in Integer
Linear Programming (ILP). However, cutting planes have seldom been
applied in Pseudo-Boolean Optimization (PBO) algorithms derived from
the Davis-Logemann-Loveland (DLL) procedure for Propositional Satis-
fiability (SAT). This paper proposes the utilization of cutting planes in
a DLL-style PBO algorithm, which incorporates the most effective tech-
niques for PBO. We propose the utilization of cutting planes both during
preprocessing and during the search process. Moreover, we also establish
conditions that enable clause learning and non-chronological backtrack-
ing in the presence of conflicts involving constraints generated by cutting
plane techniques. The experimental results, obtained on a large number
of classes of instances, indicate that the integration of cutting planes
with backtrack search is an extremely effective technique for PBO.

1 Introduction

In this paper we address algorithms for Pseudo-Boolean Optimization (PBO)
and focus on exploiting effectively the information provided by the cost func-
tion. Our objective is to use this information for pruning the search space. Hence,
we propose to augment SAT-based PBO algorithms with bounding capability,
associated with information obtained from the Pseudo-Boolean (PB) constraints
and from the cost function'. Moreover, we propose to extend a SAT-based PBO
algorithm with lower bounding, that uses linear programming relaxation for
compute lower bounds [2], and integrate the identification of cutting planes in
this algorithm. We also establish conditions for learning new constraints from
conflicts associated with cutting planes. Furthermore, we show that these new
constraints can be used for performing non-chronological backtracking. Exper-
imental results, obtained on representative problem instances, illustrate the ef-
fectiveness of integrating cutting planes in SAT-based algorithms for PBO.

! An extended version of this paper is available in [1].

2 Preliminaries

An instance P of the Pseudo-Boolean Optimization problem can be defined as

follows:
minimize) ¢; - x;
JEN
subject to Z aijlj Z bi,
jen (1)
T; € {0,1}7(11']‘,()1' S N(J)r,’i eM
N={1,...,n}, M ={1,...,m}

where c¢; is a non-negative integer cost associated with variable x;,j € N and
ai; denote the coefficients of the literals [; in the set of m linear constraints.

Every pseudo-boolean formulation can be rewritten such that all coefficients
ai; and right-hand side b; be non-negative. In a given constraint, if all a;; co-
efficients have the same value k, then it is called a cardinality constraint, since
it only requires that [b;/k] literals be true. A pseudo-boolean constraint where
any literal set to true is enough to satisfy the constraint, can be interpreted as a
propositional clause. This occurs when the value of all a;; coefficients are greater
than or equal to b;. If every constraint can be interpreted as a propositional
clause then P is an instance of the binate covering problem (BCP). Covering
formulations have been the subject of thorough research work [3].

Notice that a linear pseudo-boolean optimization problem can also be viewed
as a special case of linear integer programming problem. The linear integer pro-
gramming formulation for the constraints can be obtained if we replace literals
Z; by 1 — z;. Throughout the paper we refer extensively to backtrack search
algorithms. In addition, the PB inference techniques of [4] are assumed.

3 Pseudo-Boolean Optimization Algorithms

Given that PBO is a restriction of generic ILP, all algorithms proposed in the past
for ILP can also be used for PBO. Among these, complete approaches include
branch-and-bound with linear programming relaxations [5], cutting planes [6],
branch-and-cut [7], and branch-and-bound [3]. Besides algorithms for generic
ILP, algorithms specific to PBO have also been proposed. These include SAT-
based algorithms [4, 8,9], branch-and-bound algorithms [3] and SAT-based al-
gorithms with lower bounding [2]. A survey of these algorithms is available, for
example, in [1]. In the reminder of this section we address the utilization of linear
programming relaxations.

Linear programming relaxations (LPR) have long been used as a lower bound
estimation procedure in branch-and-bound algorithms for solving integer pro-
gramming problems [5,7,10]. Tt is also often the case that the LPR bound is
tighter than the one obtained through other lower bounding procedures [2,11].
The general formulation of the LPR for a pseudo-boolean problem instance is
obtained from (1) as follows:

minimize 2, = cx 2)
subject to Ax >b, 0<z <1

where vector ¢ defines the non-negative integer cost associated with every deci-
sion variable in vector x. Entries of matrix A define the constraint coefficients
and vector b the right-hand side of every constraint. It is well-known that the
solution of (2) is a lower bound on the solution of (1) [5].

4 Cutting Planes

Integer Linear Programming algorithms use linear programming relaxations (as
formulated in (2)) for estimating lower bounds on the value of the cost function.
However, linear programming relaxations have other applications, including the
identification of cutting planes.

The work on cutting planes can be traced to Gomory [6]. Gomory introduced
a cutting plane technique that derives new linear inequalities in order to exclude
some non-integer solutions from (2). However, the new linear inequalities are
valid for the original integer linear program and so can be safely added to the
original problem. Moreover, solving (2) with the added inequalities may yield a
tighter lower bound estimate.

Since Gomory’s original work, a large number of cutting plane techniques
have been proposed [5,10,12]. This section addresses Gomory fractional cuts
and clique cuts, which are integrated in a SAT-based PBO solver.

In simplex-based solutions for solving the LPR from (2), the simplex method
adds a set S of slack variables such that each constraint can be formulated as:

Z QijTj — S = bl S Z 0 (3)
JjEN
This formulation is called the slack formulation and it is used to create the
original simplex tableau [5].

If the solution z* of the LPR is integral, then z* provides the optimal solution
to the original problem. Otherwise, choose a basic? variable x; such that its value
on the LPR solution is not integral. Since z; is a basic variable, after the pivot
operations performed by the simplex algorithm on (3), there is a row in the
simplex tableau of the form,

T + Z ;T + Zﬁisi = 1'; (4)
iEP i€Q

where P and @) are the sets of indexes of non-basic variables (problem variables
and slack variables, respectively). In [6], Gomory proves that the inequality,

> fle)zi+> f(Bi)si > f(x3) (5)
i€P 1€Q

where f(y) =y — |y], is violated by the solution of the LPR, but satisfied by all
non-negative integer solutions to (4). Hence, it is also satisfied by all solutions to

2 See for example [5] for a definition of basic and non-basic variables.

the original problem as formulated in (1) and can be added to the LPR. Solving
the LPR with the new restriction (known as a Gomory fractional cut) will yield
a tighter lower bound estimate on the value of the PBO instance. Observe that
several methods for strengthening the original Gomory fractional cuts have been
proposed [13-15], but are beyond the scope of this work.

Notice that we can use (3) to replaces each slack variable in (5) so that the
constraint only contain variables from the original PBO problem. Afterwards, if
we apply the rounding operation on the non integer coefficients we obtain a new
pseudo-boolean constraint valid for the original PBO instance as defined in (1),
since the rounding operation will only weaken the constraint.

Like the Gomory fractional cuts, clique cuts [5,10] also provide a method
that adds new inequalities in order to cut non-integral solutions from the LPR,
hence improving the tightness of lower bound estimates.

In general, we can build a conflict graph in order to represent all incompati-
ble assignments for a pseudo-boolean formula. In the conflict graph, each node
represents an assignment to a problem variable and each edge between two nodes
represents an assignment incompatibility. For each clique C in the conflict graph
we can add a new constraint of the form Ziec l; <1, where [; is the literal at
node ¢ of clique C'. One should note that we are interested in finding all maxi-
mum cliques in the conflict graph, but it is well-known that that the problem of
finding a maximum clique in an undirected graph is NP-Hard [5]. As a result, a
heuristic greedy procedure is often used.

5 Cutting Planes in SAT-Based PBO

In a modern SAT-based algorithm, a conflict analysis procedure is carried out
whenever a conflict arises [16]. Therefore, if the generated cutting plane is in-
volved in the conflict analysis process, it must be able to determine its logical
dependencies in order to backtrack to a valid node of the search tree. This sec-
tion proposes conditions for associating dependencies with computed cutting
planes, thus enabling clause learning and non-chronological backtracking from
constraints inferred with cutting plane techniques.

The most straightforward solution, for safely determining a set of dependen-
cies for the Gomory fractional cuts generated during the search process, is to
declare that these cuts depend on all decision assignments made from the root
node to the current node. This solution associates with each cutting plane all
decisions in the search tree, thus forcing chronological backtracking and ensuring
completeness. In this case, we can determine a set of literals w,,; that defines the
set of dependencies for the generated cut. When one of literals in w,; is set to 1,
the cut will no longer be active (i.e. the associated constraint will be satisfied).
Therefore, the generated cut would depend on all decision assignments and, for
all decision variables z; assigned from the root node to the current node, we
would have Z; € weyt if ; =1 or zj € weyt if 2; = 0.

In order for the generated cut to be safely added to the set of pseudo-boolean
constraints, we must add all literals [; € wey: to the cut. The coefficient of

each added literal /; must be large enough to satisfy the constraint whenever
[; = 1. Although this approach guarantees the completeness of the algorithm, if
a conflict occurs involving the generated cuts at a node IV of the search tree, the
search cannot backtrack to a node higher than N.

Another technique would be to associate dependencies with cuts following
the ideas proposed in [2] for LPR. Since each cut is derived from the outcome
of solving the LPR formulation, then we can associate with each cut the same
dependencies we associate with lower bound conflicts. However, one should note
that the tableau constraint (4), from which the Gomory fractional cut is inferred,
depends on the pivot operations performed while solving the LPR. As a result,
the tableau constraint (4) contains the slack variables assigned value 0 from the
constraints from which it depends.

Let S be the set of constraints with slack variables assigned value 0 in the
tableau constraint (4). If the literals assigned value 0 in these constraints were to
have a different value, the tableau constraint might not be inferred in the LPR.
Therefore, we can consider the assignments to those literals as the responsible
for inferring the cut and we can define w.,; as:

Weut ={l:1=0ANlEw; Aw; € S} (6)

Notice that the generated cut might not depend on all decision assignments.
Hence, if a conflict occurs involving generated cuts at node N with its depen-
dences determined as in (6), it is possible to backtrack to a node higher than N
in the search tree, i.e. a non-chronological backtrack step. Moreover, the gener-
ated cuts can also be used in different parts of the search tree, in addition to the
subtree with root at the node N.

6 Results

In order to empirically evaluate the techniques described in the paper, we ran our
solver (bsolo) on representative sets of PBO instances [17-19]. Besides bsolo, we
also ran PBS [8], Galena [4] and the commercial MILP solver CPLEX (version
7.5). The CPU times presented are from a AMD Athlon processor at 1.9 GHz
and the time limit for each instance was set to one hour. If the time limit was
reached, we provide an indication of which was the best upper bound value found
when the search was stopped. Additional results and details on the experimental
procedure can be found at [1].

The experimental results are shown in Table 1. For bsolo we present results for
four different configurations: without using cutting planes, using only fractional
Gomory cuts during the search, using clique cuts and Gomory fractional cuts
only during preprocessing, and using all cuts both during preprocessing and
during the search. For all bsolo configurations, the lower bound estimates were
obtained with linear programming relaxations.

Among the SAT-based PBO algorithms, bsolo is by far the most effective
algorithm, for the instances in this paper and for the instances in [2]. In fact, bsolo
without the utilization of cutting planes is already significantly more effective

Table 1. Experimental Results

bsolo
Benchmark sol. pbs galena cplex|no cuts Gomory pre proc. all cuts
[17] 9symml 4517| ub6453 ub6986 1.63| 328.97 41.39 716.56 225.62
C432 4822| ub6577 ub8070 3.34|ub4822 343.33 1253.60 208.52
cmb 1053| ub1490 ub1476 0.03 0.25 0.23 0.12 0.10
my_adder 4561| ub6271 ub5548 2.29| 14.94 6.54 10.15 5.07
[18] 9sym.b 5/1718.98 0.26 0.14 0.89 0.68 0.73 0.72
alud.b —| ubl121 ub53 ub50| ub50 ub50 ub51 ubb0
apex4.a 776| ub2282 ub845 3.92| ub776 810.22 ub776 2404.60
clip.b 15| ub30 1.68 0.36 9.65 1.15 4.14 5.54
e64.b —| ub99 ub53 ub49| ubs0 ub49 ub50 ub49
jac3 15| ub48 0.71 0.09 3.11 2.93 9.67 6.21
rot.b 115| ub745 ubl42 71.56| ub117 ubll7 ubl18 ubll8
sao2.b 25| ub39 132.91 0.50 11.3 5.46 9.34 18.99
[19] aim100-1_6-y1-2| 100 0.01 0.01 373.42 0.04 0.04 0.19 0.19
aim100-3_4-y1-4| 100 0.01 — 108.79 2.73 2.76 0.30 0.31
aim200-1_6-y1-3| 200 0.01 - - 0.11 0.11 0.49 0.51
aim200-6_0-y1-2| 200 0.01 0.03 ub200| 140.18 119.81 0.81 0.84
ii8a2 139| ubl50 ubl44 63.77| ubl4l wubl41l 1931.50 ubl39
ii8b1 191] ub272 ub213 7.112285.50 ub232 860.37 ubl93
ii8c1l 302| ub405 ub399 2719.59| ub416 ub413 ub320 ub321
ii8d1 —| ub515 ub432 ub351| ub470 ub470 ub359 ub401
jnhl 92 0.01 0.20 39.56| 42.81 324.99 35.84 158.63
jnh7 89 0.02 0.04 7.421 20.55 9.80 1.91 3.04
ssa7552-159 1327| ub1327 ub1327 ub1327|ub1327 ub1327 ub1327 1212.50
ssa7552-160 1359| ub1359 ub1359 ub1359| ub1359 ub1359 ub1359 1369.60

than the other SAT-based algorithms. The utilization of cutting planes further
improves the results of bsolo, making it more robust than the commercial ILP
solver cplex. Observe that the worst results for cplex occur for instances of the
minimum-size prime implicant problem. These instances are derived from CNF
formulas, where SAT-based techniques are particularly relevant.

7 Conclusions

The paper describes the integration of cutting plane techniques in SAT-based al-
gorithms for Pseudo-Boolean Optimization and outlines conditions for perform-
ing constraint learning and non-chronological backtracking based on previously
inferred cutting planes. These conditions provide novel mechanisms for extending
the most effective SAT techniques to PBO. Experimental results clearly indicate
that the utilization of cutting plane techniques can be extremely effective in
PBO. Moreover, the results are also clear in demonstrating that lower bounding
techniques are essential for hard instances of PBO. The experimental results for
the most well-known PBO solvers that do not integrate lower bounding tech-

niques, clearly demonstrate that lower bounding is essential for representative
instances of pseudo-boolean optimization.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Manquinho, V., Marques-Silva, J.: On applying cutting planes in dll-based al-
gorithms for pseudo-boolean optimization. Technical Report RT/003/05-CDIL,
INESC-ID (2005)

. Manquinho, V., Marques-Silva, J.P.: Effective lower bounding techniques for

pseudo-boolean optimization. In: Design, Automation and Test in Europe Confer-
ence. (2005)

Coudert, O.: On Solving Covering Problems. In: Design Automation Conference.
(1996) 197202

Chai, D., Kuehlmann, A.: A Fast Pseudo-Boolean Constraint Solver. In: Design
Automation Conference. (2003) 830-835

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley & Sons (1988)

Gomory, R.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64 (1958) 275278

Mitchell, J.: Branch-and-cut algorithms for combinatorial optimization problems.
In: Handbook of Applied Optimization. Oxford University Press (2002) 65-77
Aloul, F., Ramani, A., Markov, 1., Sakallah, K.: Generic ILP versus specialized 0-1
ILP: An update. In: International Conference on Computer Aided Design. (2002)
450-457

Barth, P.: A Davis-Putnam Enumeration Algorithm for Linear Pseudo-Boolean
Optimization. Technical Report MPI-1-95-2-003, Max Plank Institute for Com-
puter Science (1995)

Bixby, R.E.: Progress in linear programming. ORSA Journal on computing 6
(1994) 1522

Liao, S., Devadas, S.: Solving Covering Problems Using LPR-Based Lower Bounds.
In: Design Automation Conference. (1997) 117-120

Chvatal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics 4 (1973) 305-337

Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations
Research Letters 19 (1996) 1-9

Ceria, S., Cornuéjols, G., Dawande, M.: Combining and strengthening Gomory
cuts. In Springer-Verlag, ed.: Lecture Notes in Computer Science. Volume 920.
E. Balas and J. Clausen (eds.) (1995)

Gomory, R.: An algorithm for integer solutions to linear programs. In Graves, R.,
(eds.), P.W., eds.: Recent Advances in Mathematical Programming. McGraw-Hill
(1963) 269-302

Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfia-
bility. In: International Conference on Computer-Aided Design. (1996) 220-227
Zhu, Z.: Synthesis for mixed ptl/cmos circuit. (http://www-unix.ecs.umass.edu/-
~zzhu/)

Yang, S.: Logic Synthesis and Optimization Benchmarks User Guide. Microelec-
tronics Center of North Carolina (1991)

Pizzuti, C.: Computing Prime Implicants by Integer Programming. In: IEEE
International Conference on Tools with Artificial Intelligence. (1996) 332-336

